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Many applications like streaming audio/video, gaming, distributed or remote com-

puting transmit data over communication networks. The quality-of-service (QoS) of

these applications depends on parameters like rate, reliability, delay, power level, etc.

Furthermore, these applications need to share network resources and co-exist with

other applications which run on the same network.

Since these communication networks are digital communication systems, the trans-

mitter captures the real time data, quantizes and transmits to the receiver. At the

receiver not only a reconstruction of the original signal is performed but also there

may be a need to classify the signal into several classes. Therefore, reconstruction

fidelity and classification are also QoS requirements that many applications may de-

mand.

We are interested in the problem of transmitting data in a layered multi-hop wire-

less network. The QoS in our system is a function of rates and end-to-end delay

from transmitters to the receivers. We are considering wireless multi-hop networks,

therefore the capacity of the communication links is a function of power of trans-

mitters and the interference from other links transmitters. Furthermore, we are not

only interested in reconstructing the received quantized data but also we would like

to perform signal classification on the signals based only on the characteristics of the
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received quantized data. We break down this problem into two separate problems to

be solved at different layers of communication network as follows

Problem 1 which solves a network optimization problem where QoS depends on

the rate, end-to-end delay, and power of transmitters. The solution to this problem

essentially entails the rate control (congestion control) in the transport later, and the

power control in the physical layer to achieve bounded average queuing delay for the

end-to-end transmission of the data.

Problem 2 which focuses on designing a quantizer that guarantees reproduction fi-

delity of the signals and good classification results based on the information preserved

in the reconstructed signal.

Linkage and Inter-connection between Problem 1 and Problem 2 Problem

1 determines the data rate of the sessions. The data rate can be translated into

bits/vector rate which is fed into the quantizer that is designed by solving Problem 2.

Therefore a communication system is devised that takes advantage of the solutions

of Problem 1 and 2 in order to achieve the bigger objective of this dissertation.

Let us now consider the solution to Problem 1. Allocating limited resources such as

bandwidth and power in a multi-hop wireless network can be formulated as a Network

Utility Maximization (NUM) problem. Researchers have been using NUM in order to

develop new network resource allocation algorithms by augmenting the earlier NUM

problems. In the NUM framework, sources in the network measure their performance

by a utility function. We augment the basic NUM problem with a constraint based on

the average queueing delay requirements of the sources. Furthermore, the capacity of
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the links in the case of wireless networks depend on the power of transmitters. This

augmented NUM formulation turns out to be a non-convex problem. We convert this

non-convex problem with high-SIR assumption and a change of variable to a convex

problem. We furthermore propose methods to solve this problem in an iterative

distributed manner. Simulation results demonstrate the efficacy of the distributed

algorithm developed.

To solve Problem 2, we adopt high-rate analysis to design a quantizer that is opti-

mized in the task of reconstruction fidelity as well as classification at the decoder. We

deploy symmetric Kullback-Leibler (KL) divergence measure between the conditional

probabilities of class given the signal before and after quantization as our distortion

measure. We derive the optimum point density of the quantizer for minimizing the

symmetric KL divergence. We study tradeoff between classification accuracy and

reproduction fidelity. We also derive the effects of a mismatched distortion measure

and show that for reduced complexity the original distortion measure can be replaced

by a weighted mean square error (WMSE) distortion measure. We examine the per-

formance of these methods on synthetically generated data as well as real data set

and observe that our methods are superior in the task of classification of signals at

the decoder. The tradeoff is the lower performance in distortion.

The linkage and interrelationship of Problem 1 and 2 is shown at the end. Problem

1 determines the data rate of the sessions. The data rate can be translated into

bits/vector rate which is fed into the quantizer that is designed by solving Problem 2.

Therefore a communication system is devised that takes advantage of the solutions

of Problem 1 and 2 in order to achieve the bigger objective of this dissertation.
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CHAPTER 1

Introduction

Many applications like streaming audio/video, gaming, distributed or remote com-

puting transmit data over a telecommunication system. These telecommunication

systems are communication networks which can consist of IP based networks, wire-

less multi-hop networks or other types of networks. See Figure 1.1 which shows the

abstraction layers of a telecommunication network.

Figure 1.1: Network Layers and the Optimization Algorithms.

1
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2

An application running on such a network achieves different quality-of-service

(QoS) depending on many different parameters. Data in applications are of different

forms such as speech, audio, video, or other sensor data. The data is captured,

processed, quantized, and transmitted to a receiver. These applications will receive

different QoS from the network depending on the rate, reliability, delay, jitter, power

level, etc. Each layer of a communication network controls a subset of these variables

and also observes a subset of variables and constants from other layers. For some

applications, e.g., email or file transfer, the delay between transmitter and receiver

is not such a crucial matter as much as it is for an audio/video streaming or gaming

applications. For example in a Voice over IP application, voice packets that reach

the destination with an unreasonably long delay cannot be of any use. Furthermore,

these applications need to co-exist with other applications which run on the same

communication network. Therefore they are sharing the network resources. Sharing

the network resources brings the necessity to have congestion control algorithms in

place to avoid the communication links to become congested, see [KMT98]. In a

wireless multi-hop network, the capacity of the links is a function of transmitter

powers as well as interference from other transmitters. Consequently, the congestion

control in the transport layer and power control in the physical layer need to be jointly

designed and distributively implemented, see [Chi05].

Furthermore, since these communication networks are digital communication sys-

tems, the transmitter captures the real time data, processes them and generates

vector or other multi-dimensional data that need to be quantized and transmitted to

the receiver. Thus, the quantization and transmission of vector data is required in

many applications. After transmission of the quantized data, a replica of the original



www.manaraa.com

3

signal is retrieved from the quantized data. Quantizers make an effort to guarantee

that the retrieved signal resembles the original signal in one sense or another. For

example in sound applications, as long as the de-quantized sound signal sounds very

much like the signal before quantization to the human ear, it is considered that the

signal recovery was successful. Similarly, when quantizing images, the de-quantized

replica of the image should look good to the human eye, or have some low distortion.

At the receiver side of a communication system, not only a reconstruction of the

original signal is performed and used but also there may be a need to classify the

signal into several classes. For example in a speaker or speech recognition system, an

algorithm is in charge of classifying the received signals into say male or female voices,

or identifying the person on the other side of the line or recognizing parts of speech

automatically, like in many speech automated systems. Therefore, classification is

another QoS that many applications may require.

1.1 Problem Statement

We are interested in the problem of transmitting data in a layered multi-hop

wireless network. The QoS in our system is not only a function of rates but also our

sources may require low end-to-end delay in their transmissions to the receivers. Since

we are considering a wireless multi-hop network, the capacity of the communication

links is a function of power of transmitters and the interference from other links’

transmitters. Furthermore, we are not only interested in reconstructing the received

quantized data but also we would like to perform signal classification on the signals

based only on the characteristics of the received quantized data.
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Figure 1.2 shows the relationship between the parameters involved in this problem,

both QoS parameters and the network resources. It also shows the interrelationship

between the parameters.

Figure 1.2: QoS parameters, network resources and their relationships.

We break down this problem into two separate problems to be solved at different

layers of communication network as follows

Problem 1 which solves a network optimization problem where QoS depends on the

rate of transmission, the end-to-end delay, and the power of transmitters which also

determines battery life of the devices. The solution to this problem essentially entails

the rate control (congestion control) in the transport later, and the power control

in the physical layer to achieve bounded average queuing delay for the end-to-end

transmission of the data.

Problem 2 which focuses on designing a quantizer in the application/presentation

layer that guarantees not only reproduction fidelity of the signals but also good classi-
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fication results based on the information preserved in the reconstructed signal. Figure

1.3 shows a diagram of the problem and how it is broken down into sperate problems

to be solved at different layers and eventually combined to achieve the main objective

of this dissertation.

Figure 1.3: Breakdown of the problem.

Linkage and Interrelationship between Problem 1 and Problem 2 Problem

1 determines the data rate of the sessions. The data rate can be translated into

bits/vector rate which is fed into the quantizer that is designed by solving Problem 2.

Therefore a communication system is devised that takes advantage of the solutions of

Problem 1 and 2 in order to achieve the bigger objective of this dissertation. Figure

1.4 shows a diagram explaining how we combine the results of the two problems to

achieve our goal.



www.manaraa.com

6

Figure 1.4: Breakdown of the problem.

In the following we present some background to the reader and present some

references to related work.

1.2 Background and Related Work

A layered architecture in communication networks adopts a modularized and often

distributed approach to network design problems. Each module (layer) controls a

subset of variables and also observes a subset of variables and constants from other

layers. Each layer in the protocol stack hides the complexity of the lower layer and

provides a service to the higher layer. A layered architecture enables a scalable,

evolvable, and implementable with lower complexity while introducing limitations in

fairness and efficiency. See Figure 1.1.

How does one allocate resources at the various layers of a network shared by

multiple users with differing QoS requirements? One can pursue a cross-layer de-
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sign approach to the problem of network resource allocation at the expense of higher

complexity in communication and computation. Even after crossing the layers, it

is desirable to obtain architectural modularity for practical implementation. In the

following we will show that we can take advantage of the Network Utility Maximiza-

tion (NUM) framework to decompose a complex network problem into sub-problems.

These sub-problems can be solved at different layers, yet communicate with each

other through either implicit or explicit message passing. The implicit messages are

events or quantities which are observed or measured through normal behavior of the

rate control algorithms, for example they could be the receipt of the acknowledgment

packets or the end-to-end delay measured from the time a packet is sent until its

acknowledgment packet is received. The explicit messages quantify information that

is needed for a specific decomposition.

The problem of allocating limited resources in a multi-hop wireless network can

be formulated as a NUM problem. NUM is a mathematical optimization framework

that was used to model the working Transmission Control Protocol (TCP) conges-

tion control algorithms [KMT98, LL99, LPW01]. Because of the flexibility of this

framework, NUM has been extended from an analytic tool of reverse-engineering to a

mathematical theory of a layered network architecture. Researchers have been using

it in order to develop new network resource allocation and internet congestion con-

trol algorithms by modifying or augmenting the earlier NUM problems. In the NUM

framework, sources in the network measure their performance by a utility function.

This function is a concave function of usually transmission rate and possibly other

parameters. For example the utility function for TCP Vegas is Us(xs) = log(xs),

where xs is the data rate of source s. The objective of each source is to maximize
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its utility and the objective of the network as a whole is to maximize the aggregate

utility of all the sources. Clearly, the transmission rate of each link cannot exceed

the link capacity. Therefore, NUM is a constrained optimization problem.

Extensions to the NUM problem There are numerous extensions of the basic

NUM problem. To mention a few, in [Chi05], joint congestion control and power

control is examined; in [LCC06a], an optimization on rate and reliability is considered;

in [LCC06b], a joint end-to-end congestion control and per-link medium access control

in ad-hoc networks is studied; in [SLGY07], the problem of allocating rate to sessions

with bandwidth and delay requirements is addressed; in [LMS04], a joint time-slot

and power allocation method for wireless cellular systems is presented; and in [MB02],

resource allocation and pricing for the downlink of a wireless network is considered.

Delay in the NUM framework While these papers have made many signifi-

cant contributions, to the best of our knowledge, the problem of incorporating the

delay requirement of the sources into the resource allocation problems in wireless net-

works with interference-limited link capacities has not been considered in the NUM

framework. In terms of handling delay in wireless networks, in [RLM02], a dynamic

programming optimization method is introduced to obtain the optimal bit-rate/delay

control policy in the downlink for packet transmission in wireless networks with fad-

ing channels. In [RLM02], a fixed symbol rate is assumed and different bit rates are

achieved by choosing the transmitted symbols from the appropriate signal constella-

tion (adaptive modulation); and in [JCOB02], several extensions of the NUM problem

including queuing delay are outlined. In [LCCD09], the authors incorporate the delay
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in addition to rate and reliability in the NUM problem. However, they assume fixed

capacity links that consist of sub-links with different rate-reliability characteristics.

Through generalized convexity arguments, the study [PDE08] addressed the al-

location of power and bandwidth for the general SIR case for the basic NUM prob-

lem (2.1). However in this dissertation the constraints in the optimization problem

that result from the delay requirements are much more complex than the constraints

in [PDE08]. Therefore the series of transformations that the authors proposed in

[PDE08] to convert the non-convex problem into a convex problem do not appear to

lead to a convex problem in our case. While we focus on the high SIR case ([Chi05],

[CB04], [JXB03], [MCLG06]) in this dissertation, the extension to the general SIR

case is a matter of further study.

There have been many extensions to the problem of incorporating end-to-end

delay requirements in the NUM framework. In [LPCC11], authors incorporated delay

to the objective function as a penalty term and studied the stability conditions for

delay-independent and delay-dependent cases. By introducing Virtual Link Capacity

Margin, which reflects the gap between feasible link capacity and maximum allowable

rate over link, the authors in [QBX14] characterized delay as constraint and proposed

a joint rate allocation and scheduling scheme in multi-hop wireless networks.

The aforementioned literature covers some of the studies we found related to the

first problem we are trying to solve, Problem 1. How about the second problem,

Problem 2?

Vector quantization Vector quantization (VQ) is an extension of scalar quanti-

zation for quantizing vectors. Vectors can be a representation of a speech waveform
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or an image or they could be parameters that represent a spectral envelope of speech

signals, for instance. A vector quantizer consists of a set of reproduction vectors which

are also called codepoints, ci, i = 1, ...,M . In the vector quantization process, the re-

production vector ci∗ that minimizes the distortion between the source vector sk and

the reproduction vector ci is selected and its index i∗ is transmitted to the decoder,

see Figure 1.5. The number of reproduction vectors in the quantizer is dependent

on the rate (number of bits) available for the transmission of the quantization index.

For example a quantizer with N reproduction vectors needs log2N bits to transmit

the quantization index.

Figure 1.5: An example of 2D VQ - Every pair of numbers falling in each partition

are approximated by the red star associated with that partition.

High-Rate Theory In the development of vector quantizers [Gra89] we can use

high-rate theory, an asymptotic approximation of a quantizer when the bit rate is
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high. A very fundamental assumption of high-rate theory is that for each region where

the same reproduction vector is assigned as the quantization vector, the probability

density function of the source is uniform. Based on the high-rate theory, we can

derive the optimal point density function that minimizes our choice of distortion

measure. The point density function determines the number of reproduction vectors

in a unit volume of the source data space. The point density function is a function

of the probability density function of the source data. Therefore, the knowledge of

the probability density function (PDF) of the source is required or one can model the

PDF of a signal vector by a Gaussian Mixture Model (GMM).

Quantization of signals has been extensively studied [GN98, GG92]. Several stud-

ies have been done in combining detection and quantization with different distortion

measures [Kas77, SS77, GH03]. In [VB10], the authors study quantization for detec-

tion in a sensor network scenario. In [VV08], the quantization of prior probabilities

for hypothesis testing is presented. These studies have made significant contributions

to the design of quantizers for the purpose of detection. However, most of them are

applicable to binary classification, i.e., binary detection or hypothesis testing, and

either are not expandable to multiple class problems or the extension is not straight-

forward, to the best of our knowledge. There has been some research on combining

quantization and classification. In [PPG+96], the authors extend the distortion mea-

sure for the Lloyd algorithm by a Bayes risk term which is defined by a weighted

cost of classification error. Moreover, in [LJ07], the authors proposed a method for

joint quantization and classification in distributed quantizers in which the quantiz-

ers sequentially process an input and communicate with each other. Despite the

aforementioned contributions, the theory of high-rate quantization for the purpose
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of classification still remains somewhat underdeveloped compared to quantization for

detection, or quantization theory in general.

1.3 Contributions of Our Work

For Problem 1 we will examine an augmented NUM formulation in which rate

and power control in a wireless network are balanced to achieve bounded average

queueing delays for sources. With the additional delay constraints, the augmented

NUM problem is non-convex. Therefore, we will present a change of variable to

transform the problem to a convex problem and we will develop a solution which

results in a distributed rate and power control algorithm tailored to achieving bounded

average queueing delays. The solution entails power control in the physical layer and

congestion control in the transport layer. See Figure 1.1.

For Problem 2, let us remind the reader that the performance of a quantization

system is gauged by a measure called the distortion measure which is application

specific. Minimizing the distortion measure in quantization guarantees a level of sim-

ilarity between original and recovered signal in one sense or another. Mean Square

Error (MSE) is the distortion measure of choice for many quantization applications.

We choose a novel distortion measure defined as the symmetric Kullback-Leibler (KL)

divergence measure between the conditional probabilities of class given the signal be-

fore and after quantization. Our approach in using the KL divergence measure is

different than some other related research, notably [GH03, LJ07]. To be specific, oth-

ers have tried to minimize the loss in the discrimination between the two classes due

to quantization. On the other hand, we try to minimize the aggregate discrimination

of the conditional probabilities of classes given the signal before and after quantiza-
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tion. Intuitively, it means that we will make sure that the conditional probability of

the classes given the data undergoes the least amount of change due to quantization.

We will present a high-rate analysis of the quantizer and derive the optimum point

density of the quantizer for minimizing the symmetric KL divergence. Furthermore,

we will study the tradeoff between classification accuracy and reproduction fidelity

and present a point density function for the case of tradeoff. We will also derive the

effects of a mismatched distortion measure and show that for reduced complexity the

original distortion measure can be replaced by a weighted mean square error (WMSE)

distortion measure. We will examine the performance of these methods on syntheti-

cally generated data and a real data set and observe that these methods are superior

in the task of classification of signals at the decoder with lower reproduction fidelity

as a tradeoff.

Furthermore, we will demonstrate that solutions to these two important problems

can be combined to devise a communication system that not only optimizes the rate

of transmission and power of transmitters to achieve bounded average delay but also

deploys a quantizer that is optimized in the task of classification at the decoder as

well as reconstruction of the signal.

1.4 Dissertation Outline

The rest of this dissertation is organized into three main chapters as follows:

Chapter 2 attacks the first objective of this dissertation which is incorporating

the average delay requirements of the sources into the network resource allocation

problem. We construct a NUM problem in a multi-hop wireless network with inter-
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ference dependent link capacities. The average delay requirements is introduced as

a constraint in the NUM problem. This problem turns to be a non-convex problem.

Through a series of transformations we cast the problem into a convex problem and

solve it in a distributed manner. We present simulation results on different network

topologies and various scenarios of network demands.

Chapter 3 studies the second objective of this dissertation, the problem of quan-

tizing signals for the purpose of achieving good classification at the decoder. We

propose a new distortion measure that is optimized for the task of classification at

the decoder and design a quantizer based on the high-rate theory. We present results

of classifications on both synthetic and real data sets.

Chapter 4 presents simulations where a network such as the one presented in

Chapter 2 is in charge of transmitting signals from different classes as is presented

in Chapter 3. This chapter demonstrates how the algorithms developed in the pre-

vious two chapters can work in tandem to not only satisfy rate, power, and delay

requirements of the network as well as better performance of classification at the

decoder.

Chapter 5 summarizes the dissertation and outlines some future research direc-

tions.
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CHAPTER 2

A Distributed Congestion and Power
Control Algorithm to Achieve Bounded
Average Queuing Delay in Wireless
Networks

Allocating limited resources such as bandwidth and power in a multi-hop wire-

less network can be formulated as a Network Utility Maximization (NUM) problem.

In this approach, both transmitting source nodes and relaying link nodes exchange

information allowing for the NUM problem to be solved in an iterative distributed

manner. Some previous NUM formulations of wireless network problems have con-

sidered the parameters of data rate, reliability, and transmitter powers either in the

source utility function which measures an application’s performance or as constraints.

However, delay is also an important factor in the performance of many applications.

In this dissertation, we consider an additional constraint based on the average queue-

ing delay requirements of the sources. In particular, we examine an augmented NUM

formulation in which rate and power control in a wireless network are balanced to

achieve bounded average queueing delays for sources. With the additional delay con-

straints, the augmented NUM problem is non-convex. Therefore, we present a change

of variable to transform the problem to a convex problem and we develop a solution

15
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which results in a distributed rate and power control algorithm tailored to achieving

bounded average queueing delays. Simulation results demonstrate the efficacy of the

distributed algorithm.

2.1 Overview

Multihop wireless networks are created by a group of nodes that communicate

via wireless links possessing interference-limited capacities. Without a fixed infras-

tructure or centralized administrator, these networks are decentralized and ad-hoc in

manner. Each node can act as either a source or a router to forward traffic to the

destination. Mobile ad-hoc networks and sensor networks are examples of multihop

wireless networks.

Applications like voice, streaming multimedia, gaming, distributed and remote

computing, might expect different levels of data rate, reliability, and end-to-end de-

lay from the wireless communication system. Data that is transferred without meeting

the requirement of the application, as far as the aforementioned attributes are con-

cerned, might be of little or no use to the application. Therefore, there arises a need

for algorithms that accommodate different trade-offs between requirements and the

costs to satisfy them. Moreover, wireless resources such as power and bandwidth are

far from sufficient unless wise resource utilization techniques are deployed in order

to achieve better efficiency. The framework of Network Utility Maximization (NUM)

[KMT98] has been used in many network resource allocation and internet congestion

control protocols [LCC06a, Chi05, Low03].

In a network of interconnected nodes, associated with each data session, there is

a session data rate xs (bits/sec) and a utility Us(xs) for session s. The utility Us(xs)
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is an increasing, strictly concave, and continuously differentiable function of xs, and

is a quality measure as well. In other words, the higher the data rate, the better

the quality measure of session s. The total utility of the network is assumed to be

the sum of the individual utilities of sessions. The NUM problem, in its most basic

formulation, can be stated as a maximization of the aggregate utility of the sources

in the network subject to rate constraints on each link:

max
xs,∀s

∑
s

Us(xs),

subject to:
∑

s: �∈L(s)
xs ≤ c�, ∀�; xs ≥ 0, ∀s, (2.1)

where c� represents the capacity of link � and L(s) represents the set of links that

session s uses in order to transmit the data from its source to its corresponding desti-

nation. Hence the routing information is in L(s). In this dissertation we assume that

routing is determined by a lower layer mechanism and that the routing changes on a

time scale that is much slower than the rate of convergence of the algorithms devel-

oped in this dissertation [Chi05]. Therefore, the objective of the NUM formulation is

to maximize the aggregate utility of the sessions while satisfying the constraints, viz.,

session rates are positive and the aggregate data rate on each link does not exceed the

link capacity. A standard solution to this problem is based on Lagrangian decomposi-

tion (e.g., [LL99]). Among recent papers are numerous extensions of this basic NUM

problem. To mention a few, in [Chi05], joint congestion control and power control

is examined; in [LCC06a], an optimization on rate and reliability is considered; in

[LCC06b], a joint end-to-end congestion control and per-link medium access control

in ad-hoc networks is studied; in [SLGY07], the problem of allocating rate to sessions

with bandwidth and delay requirements is addressed; in [LMS04], a joint time-slot
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and power allocation method for wireless cellular systems is presented; and in [MB02],

resource allocation and pricing for the downlink of a wireless network is considered.

While these papers have made many significant contributions, to the best of our

knowledge, the problem of incorporating the delay requirement of the sources into

the resource allocation problems in wireless networks with

interference-limited link capacities has not been considered in the NUM framework.

In terms of handling delay in wireless networks, in [RLM02], a dynamic programming

optimization method is introduced to obtain the optimal bit-rate/delay control pol-

icy in the downlink for packet transmission in wireless networks with fading channels.

In [RLM02], a fixed symbol rate is assumed and different bit rates are achieved by

choosing the transmitted symbols from the appropriate signal constellation (adaptive

modulation); and in [JCOB02], several extensions of the NUM problem including

queuing delay are outlined. In [LCCD09], the authors incorporate the delay in addi-

tion to rate and reliability in the NUM problem. However, they assume fixed capacity

links that consist of sub-links with different rate-reliability characteristics.

Propagation delay, transmission delay, processing delay and queuing delay are

the main components of the total delay in a network. For an application producing

bursty data in which the short-term data rate may exceed the capacity of the wireless

links, queuing delay can be quite significant [JCOB02]. The lack of available capacity

demands buffering, and therefore queuing delay can be the dominant component of

total delay. Therefore in this dissertation we only consider the average queuing delay.

In this dissertation, we build on the work in [Chi05] and [SLGY07] to consider

balancing powers of the transmitters and rates of the sessions in a multihop wireless

network in order to achieve bounded average queuing delays for the sessions with
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delay sensitive requirements within the NUM framework. The delay constraints and

interference-dependent link capacities cause the problem to become a complex opti-

mization problem with non-convex constraints. With a high SIR assumption we are

able to transform the non-convex problem to a convex problem ([BV04, BB99]) by

a change of variable. Furthermore, we develop the algorithm in order to solve the

problem in a distributed manner. In the solution algorithm, sessions adjust their

rates to maximize their utility function but take into account the cost they have to

incur for using the bandwidth. The network takes the responsibility of breaking up

the delay requirement of the sessions into delay requirements along each link. The

link transmitters adjust their power levels to accommodate sufficient data rate along

the links.

Through generalized convexity arguments, a recent paper [PDE08] addressed the

allocation of power and bandwidth for the general SIR case for the basic NUM prob-

lem (2.1). However in this dissertation the constraints in the optimization problem

that result from the delay requirements are much more complex than the constraints

in [PDE08]. Therefore the series of transformations that the authors proposed in

[PDE08] to convert the non-convex problem into a convex problem do not appear to

lead to a convex problem in our case. There is further explanation of this issue at

the end of Section 2. While we focus on the high SIR case ([Chi05], [CB04], [JXB03],

[MCLG06]) in this dissertation, the extension to the general SIR case is a matter of

further study.

Our preliminary results on this part of this dissertation appeared in [DFMP07],

and [DMFP10]. The rest of the chapter is organized as follows. In Section 2.2, the

system model and optimization problem is presented in which the basic NUM problem
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is expanded to accommodate the power and delay requirements. In Section 2.3, the

algorithm to solve the expanded NUM problem is derived along with its convexity

and feasibility discussions. Performance of the new algorithm along with comparisons

with previous works are provided in Section 2.4.

2.2 System Model and Optimization Problem

Consider a wireless network with N nodes which are connected to one another

via L links. In wireless networks, the link capacities are dependent on the signal to

interference ratios of the corresponding links. The signal-to-interference ratio (SIR)

on each link depends on the power of the transmitter on that link as well as the con-

sequent interference due to other links’ transmitter powers and the noise on the link

[Gol05]. Therefore, the constant capacity assumption in wired networks is not valid in

the wireless case anymore. Due to interference in wireless networks, capacities of the

links are interdependent. The algorithm that we develop in this dissertation detects

the bottleneck link implicitly in a distributed and adaptive manner, as in [Chi05],

and hence by power re-distribution optimally moves the bottleneck link around in

order to achieve the delay constraints. Assuming P to be the transmit power vector

whose �-th element P� is the power level of the transmitter of link �, the capacity of

the wireless link � can be expressed as

c�(P) = B log(1 +K SIR�(P)), (2.2)

where K is a constant that depends on the modulation and the required bit error

rate [Gol05]. Let B be the bandwidth of the channel that can be assumed to be one
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unit without loss of generality [Gol05]. Then, the SIR for link � may be expressed as

SIR�(P) =
P�G��∑

k �=�

PkG�k + n�

, (2.3)

where G�� and G�k are path gain and path loss, respectively, and n� is the thermal

noise power on the receiver of link �, [Bam98]. Note that c� can be approximated

as log(SIR�) assuming that K SIR � 1 (i.e., high SIR scenarios) and by taking the

effect of K into G��, i.e.,

c�(P) ≈ log(SIR�(P)). (2.4)

This research proposes and analyzes a distributed algorithm for joint optimization of

end-to-end congestion control, power control, and average queuing delay requirements

of the sessions based on the NUM framework for the high SIR case of (2.4). Consider

the requirement of the average queuing delay on a link to be less than a specific

amount, i.e., E(T�) ≤ d�, where d� is the local average delay allowed on link � and T�

is the queuing delay on link �. Let us assume a queuing delay model based on the

assumption of general packet length distribution (with mean 1/μ and variance σ2 on

every link) and each link modeled as an M/G/1 queue [SLGY07, LCCD09, BG92,

GK77]. Therefore the average queuing delay on each link is equal to (see [SLGY07]

or [GK77])

E(T�) =
(1− β)/μ

c�
+

β/μ

c� −
∑

s: �∈L(s)
xs

, (2.5)

where β = (1 + μ2σ2)/2. As is also mentioned in [SLGY07], (2.5) is equivalent to

the Pollaczek-Khinchin (P-K) formula [BG92, page 186] for average delay in M/G/1

queues. Therefore, substituting for the expression of E(T�) in the delay requirement
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of E(T�) ≤ d�, it follows that

(1− β)/μ

c�
+

β/μ

c� −
∑

s: �∈L(s)
xs

≤ d�. (2.6)

Following some simple algebraic manipulations (2.6) modifies to

∑
s: �∈L(s)

xs ≤ c� − β

μ d� − 1−β
c�

. (2.7)

Note that the aforementioned delay model (2.5) is based on packet-by-packet trans-

mission. On the other hand, the NUM framework formulation is based on a fluid

model for transmission. Mixing packet-by-packet transmission models with fluid mod-

els is an approximation but very common in the NUM literature [SLGY07, LCCD09].

Now consider the requirement of the aggregate data rate of all sessions going through

a link to be positive and less than the capacity of the link, i.e., 0 ≤ ∑
s: �∈L(s) xs ≤ c�.

We now observe that this requirement is equivalent to E(T�) ≥ 1/μ c�. Indeed, note

that

1

μ c�
≤ E(T�) ≤ ∞. (2.8)

Substituting for the expression for E(T�) from (2.5), we get

1

μ c�
≤ (1− β)/μ

c�
+

β/μ

c� −
∑

s: �∈L(s)
xs

≤ ∞. (2.9)

Next, apply the following algebraic manipulations:

• Move the first term in the middle to the other side of the inequalities and

multiply by μ:

1

c�
− 1− β

c�
≤ β

c� −
∑

s: �∈L(s)
xs

≤ ∞. (2.10)
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• Combine the terms on the left hand side and divide by β:

1

c�
≤ 1

c� −
∑

s: �∈L(s)
xs

≤ ∞. (2.11)

• Invert the terms:

0 ≤
∑

s: �∈L(s)
xs ≤ c�. (2.12)

Therefore considering the power dependent link capacities (using c�(P) instead of

c�), the NUM problem can be expressed as follows:

max
x,P,d

∑
s

Us(xs)

subject to:
∑

s: �∈L(s)
xs ≤ c�(P)− β

μ d� − 1− β

c�(P)

, ∀�;

d� ≥ 1

μ c�(P)
, ∀�;

∑
�∈L(s)

d� ≤ Ds, ∀s; xs ≥ Rs, ∀s. (2.13)

where the objective function is the aggregate sum of the utilities of the sessions. The

first constraint is the result of the requirement that E(T�) ≤ d� which yields (2.7); the

second constraint is the result of 0 ≤ ∑
s: �∈L(s) xs ≤ c�; the third constraint is simply

the total average queuing delay requirement for session s, which is the sum of per-link

queuing delays (d�) for the links that session s uses, and Ds is the requirement that

session s imposes on its own queuing delay; and the fourth constraint is the minimum

rate requirement for each session. Here the optimization variables are x, P, and d as

opposed to just x in the basic NUM problem. The assumption of positive power and

a maximum allowable power for each transmitter is obvious and taken into account in

the optimization problem, even if it is not explicitly indicated hereafter as in [Chi05].
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As we mentioned in the introduction, in [PDE08] the authors solve the basic NUM

problem (2.1) to allocate power and bandwidth for the general SIR case. Specifically

in [PDE08], the constraint in the optimization problem is stated as

∑
s: �∈L(s)

xs ≤ c�(P), ∀�. (2.14)

The authors in [PDE08] use several results and theorems (i.e., Results 2-4, and The-

orems 1-2 in [PDE08]), to prove that the constraint (2.14) will be convex using the

following transformation

log

⎛
⎝ ∑

s: �∈L(s)
exp(x̃s)

⎞
⎠ ≤ log

(
c�(P̃)

)
, ∀�, (2.15)

where P̃ = logP , and x̃s = log xs. Following similar steps to those in [PDE08] do

not appear to convert the non-convex constraint in (2.13) into a convex constraint

for the general SIR case. So in this dissertation we focus on the high SIR case. We

prove the convexity of the optimization problem (2.13) for the high SIR case in the

next section.

2.3 Distributed Resource Allocation Algorithm

To solve this NUM problem, we use the dual decomposition approach [PC06]. In

a convex optimization problem with zero duality gap, solving the dual problem will

result in an optimal solution for the primal problem. But in the case of non-convex

optimization, the duality gap is non-zero. A non-zero duality gap means that the

standard dual-decomposition algorithm may lead to suboptimal solutions. The pri-

mal problem (2.13) is a non-convex problem since the first and second constraints

are not convex. But if we use the high-SIR approximation of the link capacities, i.e.,
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(2.4), then problem (2.13) is a convex optimization problem if the change of variable

P̃ = logP is applied. We summarize this in the following observation.

Observation: If the utility functions Us(xs) are concave in xs, and the high SIR ap-

proximation of link capacities (i.e., (2.4)) is used, and the change of variable P̃ = logP

is performed, then the optimization problem (2.13) is convex in x, P̃,d.

Proof: In order to achieve a unique optimum in the problem of maximizing a con-

cave function with a constraint of the form f(x) ≤ 0, the constraint function f(x)

needs to be convex. With a log transformation P̃ = logP, the term c�(exp(P̃)) is

strictly concave (see [Chi05]). Therefore 1
μc�(exp(P̃))

is strictly convex and consequently

the second constraint in (2.13) is a convex constraint. Furthermore, the second con-

straint in (2.13) and the fact that β ≥ 0 ensure that μd� ≥ 1−β

c�(exp(P̃))
. This inequality

and the convexity of cl(exp(P̃)) prove that β

μd�− 1−β

c�(exp(P̃))

is a convex function in d�,

and P̃. Therefore the first constraint is convex. The rest of the constraints are linear

constraints. Hence, the problem in (2.13) is a convex optimization problem.�

For simplicity we carry out the equations in the P domain. To proceed, we introduce

Lagrange multipliers λ > 0 to formulate the Lagrange dual function corresponding

to the primal problem (2.13) as

L1(x,P,d,λ) =
∑
s

Us(xs) +
∑
�

λ�

⎛
⎜⎜⎜⎝c�(P) − β

μ d� − 1−β
c�(P)

−
∑

s: �∈L(s)
xs

⎞
⎟⎟⎟⎠. (2.16)

Note that in this Lagrangian function, we just relaxed the first constraint in
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problem (2.13). The Lagrange dual function is

Q1(λ) = max
x,P,d

L1(x,P,d,λ)

with: d� ≥ 1

μ c�(P)
, ∀�;

∑
�∈L(s)

d� ≤ Ds, ∀s; xs ≥ Rs, ∀s. (2.17)

The dual problem can be formulated as

minQ1(λ) subject to: λ > 0. (2.18)

To solve the dual problem, we first try to solve (2.17). Because of the linearity of the

differentiation operator, we decompose (2.17) into two separate parallel problems as

follows:

• The source problem:

max
x

∑
s

Us(xs)−
∑
�

∑
s: �∈L(s)

λ�xs subject to: xs ≥ Rs, ∀s. (2.19)

• The link problem:

max
P,d

∑
�

λ�

(
c�(P)− β

μ d� − 1−β
c�(P)

)

subject to: d� ≥ 1

μ c�(P)
, ∀�;

∑
�∈L(s)

d� ≤ Ds, ∀s. (2.20)

Then, the dual problem (2.18) can be solved by using the gradient projection

algorithm [BB99] as

λ� =

⎡
⎣λ� − κ1

⎛
⎝c� − β

μ d� − 1−β
c�

−
∑

s: �∈L(s)
xs

⎞
⎠
⎤
⎦

+

, (2.21)

where [x]+ = max{x, 0} , and κ1 is the step size for the gradient method. Different

time-dependent step-sizes, e.g., κ1 = κ0/t, or κ1 = κ0/
√
t can guarantee the conver-

gence of λ� as the iteration time, t, increases, [Chi05]. We utilize this approach to
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step-sizes throughout the paper. The source problem in (2.19) can itself be separated

to be solved at each source independently by just the feedback information of
∑

� λ�,

i.e.,

max
xs≥Rs

Us(xs)− xs

∑
�∈L(s)

λ�. (2.22)

The link problem in (2.20) is the more difficult problem because it is coupled in two

variables P, and d. To proceed, we decouple the problem in (2.20) into two separate

convex problems. The derived congestion-control algorithm, that is named Algorithm

I later in this section, will be distributed in the power allocation with some message

passing, yet centralized in partitioning the end-to-end delay requirements to per-link

delays. We furthermore present an approach to de-centralize the solution of allocating

per-link delays, leading to Algorithm II.

Now let us consider decomposing the link problem in (2.20) into two separate

optimization problems. Each optimization corresponds to only one optimization vari-

able, assuming the other one as a constant. The rationale behind this assumption is

that the two optimization variables (P, and d) vary in value at different time scales.

To be more specific, the rate at which the transmitters’ powers (P) and therefore

the power-dependent capacities (cl(P)) change is much lower than the rate at which

the delay distribution (d) on links changes. The first problem which assumes P and

therefore cl’s are relatively constant is
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• the delay distribution problem:

min
d

∑
�

λ�

(
β

μ d� − 1−β
c�

)

subject to: d� ≥ 1

μ c�
, ∀�;

∑
�∈L(s)

d� ≤ Ds, ∀s. (2.23)

The second problem is

• the power allocation problem

max
P

∑
�

λ�

(
c�(P)− β

μ d� − 1−β
c�(P)

)
, (2.24)

which is equivalent to

max
P

∑
�

λ�c�(P)

(
μ d�c�(P)− 1

μ d�c�(P)− 1 + β

)
. (2.25)

In the following two sub-sections we introduce two solutions to the power allocation

problem.

2.3.1 Exact Power Allocation Solution

We use the gradient method [BB99], to solve the power allocation problem as

follows

P�(t+ 1) = P�(t) + κp ∇�I(P), (2.26)

where

I(P) =
∑
�

λ�c�(P)

(
μ d�c�(P)− 1

μ d�c�(P)− 1 + β

)
(2.27)

∇�(.) is the derivative with respect to P�, and κp is the step size for the gradient

method. Following [Chi05], the derivative with respect to P̃� is simply a scaled version

of the derivative with respect to P� with the scaling factor of P�. Hence the power
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update in either P or P̃ domain will work. To derive the expression for ∇�I(P),

we substitute for the relationship between SIR� and P from (2.3). We also use the

approximation c�(P) ≈ log(SIR�(P)), therefore

∇�I(P) =
λ�

P�

⎛
⎜⎜⎜⎝ μd�c�(P)− 1

μd�c�(P)− 1 + β
+

βμd�c�(P)(
μd�c�(P)− 1 + β

)2

⎞
⎟⎟⎟⎠−

∑
j �=�

λjGj�∑
k �=j GjkPk + nj

⎛
⎜⎜⎜⎝ μdjcj(P)− 1

μdjcj(P)− 1 + β
+

βμdjcj(P)(
μdjcj(P)− 1 + β

)2

⎞
⎟⎟⎟⎠. (2.28)

Note that calculating ∇�I(P) is computationally extensive. Therefore in the follow-

ing we develop an approximate solution. Using the approximate solution entails less

extensive computations and it uses less amount of message passing. Comparing the

simulation results from the developed exact solution [(2.26), and (2.27)] with the

results of the approximate solution shows that the effect of this approximation is

negligible. Therefore in all practical applications the approximate solution is recom-

mended.

2.3.2 Approximate Power Allocation Solution

To proceed to develop the approximate solution let us consider problem (2.25)

in which μd�c�(P)−1
μd�c�(P)−1+β

is a linear rational function (f(z) = z
z+β

) of variable z =

μ d�c�(P) − 1. This function can be approximated as a constant for values of z that

are 3-4 times larger than β. This approximation is a valid assumption for the cases

in which the delay requirements of the sessions are not set too tight (e.g., z ≥ 4β or

dl ≥ 4β+1
μcl(P)

). Therefore problem (2.25) can be approximated as
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max
P

∑
�

λ�c�(P). (2.29)

And again by deploying gradient method the power update equation will be

P�(t+ 1) = P�(t) + κp ∇�I(P), (2.30)

where

I(P) =
∑
�

λ�c�(P), (2.31)

and

∇�I(P) =
λ�

P�

−
∑
j �=�

λjGj�∑
k �=j GjkPk + nj

. (2.32)

2.3.3 Discussion and Summarization of the Algorithm

Note that the exact expression for ∇�I(P), (2.28), is a function of link delays

(d�’s, dj’s) unlike the approximate expression for ∇�I(P), (2.32). Therefore, this is

the reason why the message passing overhead is lower in the approximate case. In

other words, the information of the delay distribution on each link (d�’s, dj’s) does

not need to be available to the transmitters to update their power allocation (P�).

Using the power allocation that results from the power allocation problem, and

calculating c�, ∀�, the delay distribution problem, which is the minimization in (2.23)

where the optimization variable is d, can be performed. The delay distribution prob-

lem in (2.23), with the assumption of constant c�, is a convex optimization problem

and therefore there exists a unique global optimum.

Therefore in order to solve the link problem (2.20), we first solve the power al-

location problem, and then the delay distribution problem in (2.23), using iterative

methods.
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We summarize the algorithm below for the approximate power allocation case.

For the case of exact power allocation, the algorithm can be similarly derived.

Algorithm I: Rate-Power-Delay I

Initialize λ�, ∀�, and t = 0.

Repeat the following steps until convergence:

(1) t = t + 1. Every session finds its rate xs by maximizing its own

net utility:

max
xs≥Rs

Us(xs)− xs

∑
�∈L(s)

λ�(t). (2.33)

(2) Each transmitter calculates a message

mj(t) based on values that can be determined at each node and passes it

to all other

transmitters by a flooding protocol:

mj(t) =
λj(t)SIRj(t)

Pj(t)Gjj

. (2.34)

(3) Each transmitter updates its power based on

P�(t+ 1) = P�(t) + κp

(
λ�(t)

P�(t)
−

∑
j �=�

Gj�mj(t)

)
. (2.35)

(4) Solve the centralized network problem:

min
d

∑
�

λ�

(
β

μ d� − 1−β
c�

)

subject to: d� ≥ 1

μ c�l
, ∀�;

∑
�∈L(s)

d� ≤ Ds, ∀s. (2.36)
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(5) Each link updates its link price as

λ�(t + 1) =

⎡
⎢⎢⎢⎣λ�(t) − κ1

(
c�(t) − β

μ d�(t)− 1−β
c�(t)

−
∑

s: �∈L(s)
xs(t)

)⎤
⎥⎥⎥⎦
+

. (2.37)

This and other decentralized algorithms (e.g., [Chi05], [PDE08]) are achieved at

the expense of some message passing which might not always be very desirable in

some implementations. But one could develop algorithms with lower message passing

overhead at the expense of losing optimality (e.g., see [PDE08]). These sub-optimal

approximate algorithms are beyond the scope of this dissertation.

2.3.4 Decentralizing the Network Problem

Now let us consider how to decentralize Step (4) of

Algorithm I. This will lead to Algorithm II. We use the dual-decomposition method

in order to solve the delay distribution problem in (2.36). The dual decomposition

method will result in an optimum solution in the primal problem (2.36) because of

the zero duality gap. We introduce Lagrange multipliers ν > 0 to formulate the

Lagrange dual function corresponding to the primal problem in (2.36) as follows:

L2(d,ν) =
∑
�

λ�

(
β

μ d� − 1−β
c�

)
+
∑
s

νs

⎛
⎝ ∑

�∈L(s)
d� −Ds

⎞
⎠ . (2.38)

Again note that, in this Lagrangian function, we just relaxed the second constraint

in (2.36). The Lagrange dual function is

Q2(ν) = min
d�≥1/μ c�,∀�

L2(d,ν). (2.39)
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The dual problem can be formulated as

minQ2(ν) subject to: ν > 0. (2.40)

To solve the dual problem, we first solve (2.39). Because of linearity of the differ-

entiation operator, we decompose this problem to be solved on each link separately:

min
d�≥ 1

μ c�

λ�β

μ d� − 1−β
c�

+ d�
∑
s∈S(�)

νs. (2.41)

Then, the dual problem in (2.40) is solved by using the gradient projection algorithm

as

νs(t+ 1) =

⎡
⎣νs(t)− κ2

⎛
⎝Ds −

∑
�∈L(s)

d�

⎞
⎠
⎤
⎦

+

, (2.42)

where κ2 is the step size.

We summarize the new algorithm with the decentralized delay distribution below.

Algorithm II: Rate-Power-Delay II

Initialize λ�, ∀�, and t = 0.

Repeat the following steps until convergence:

Steps (1-3) same as steps (1-3) in Algorithm I

(4) Solve the decentralized network problem for the delay distribution:

Initialize νs, ∀s, and k = 0.

Repeat the following steps until convergence:

• (4-1) k = k + 1. Every link updates its own

delay share by

min
d�≥ 1

μ c�

λ�β

μ d� − 1−β
c�

+ d�
∑
s∈S(�)

νs. (2.43)
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• (4-2) The delay price is updated as

νs(k + 1) =

⎡
⎣νs(k)− κ2

⎛
⎝Ds −

∑
�∈L(s)

d�(k)

⎞
⎠
⎤
⎦
+

. (2.44)

(5) Each link updates its link price as

λ�(t + 1) =

⎡
⎢⎢⎢⎣λ�(t) − κ1

(
c�(t) − β

μ d�(t)− 1−β
c�(t)

−
∑

s: �∈L(s)
xs(t)

)⎤
⎥⎥⎥⎦
+

. (2.45)

2.3.5 Concluding Remarks on the Algorithms

Note that, there are similarities between some of the steps of Algorithm I and

Algorithm II and the algorithms that have been developed in [Chi05] and [SLGY07].

However, combining the two problems in the two aforementioned papers and decen-

tralizing the delay distribution problem

(Algorithm II) have not been developed before. It is also worth mentioning that

Step (4) of Algorithm II is done at a faster time-scale than the other steps since the

convergence of Step (4) is required before moving to Step (5). In other words, the

link share of delay distribution in Step (4-1), and the corresponding price update in

Step (4-2) are done more frequently than the congestion control and power control.

On the other hand, the time needed for the channel coding to achieve c� is assumed

to be faster than all the mentioned time scales. Furthermore, it is assumed that the

network topology and routing will not change any faster than all the other mentioned

time scales.

The delay requirements of the sessions are reflected in the parameters Ds and

in the constraint
∑

�∈L(s) d� ≤ Ds. This requirement cannot be too tight since the
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condition d� ≥ 1/μ c�(P) should also hold. Moreover, for the approximate solution

to the power allocation problem to be accurate, dl ≥ 4β+1
μcl(P)

should hold. Therefore,

the d� values cannot be lowered arbitrarily without any bound. Also, increasing the

power of the transmitters without any bounds will not result in unbounded capacity,

because the capacities of the links are interference limited.

2.4 Simulations

In the simulations, the utility function for all sessions s is taken as Us(xs) =

αs log xs, which is an increasing, strictly concave function of the session rate xs. It is

also the utility function of TCP Vegas. We examine the performance of Algorithm II

in some simple wireless network configurations, comparing the resulting rate and

power allocations with the allocations provided by the algorithm in [Chi05] which

does not include average queueing delay constraints. In addition, we explore how the

power and rate allocations change as the average queueing delay constraints are varied.

In congestion control with TCP Vegas, the utility function’s parameter αs is typically

set to the same constant for all sessions in order to achieve proportional fairness of

network rates. However, proportional fairness no longer remains true in the NUM

problem (2.13) formulation because of the inclusion of the sessions’ average queueing

delay as constraints. Therefore, in the simulations, we compare cases of all sessions

possessing the same value of αs with cases in which some sessions change their value

of αs in order to reflect their preference for high data rate. In particular, we examine

cases of greedy sources desiring both high rate and low delay, sources possessing a

preference for low delay, and sources possessing a preference for high rate. In these

comparisons, we consider two different simple wireless network configurations with 5
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nodes and 4 sessions. See Figs. 2.1 and 2.2.

In particular, in Set A of the simulations, we simulate a case of sessions with no

delay requirements and another case with different delay requirements. The results

are then compared and the impact of the delay requirements are studied. In Set B of

the simulations, we study how different αs values of different sessions affect the rate-

power allocation. In Set C of the simulations, the relationship between the rate-power

allocations and flow topology is studied. In the captions of the tables, αs represents

the vector of αs pertaining to different sessions, i.e., αs = [α1, α2, α3, α4].

2.4.1 Set A: Changing the Delay Requirement

Here we consider the effect of delay requirements on the rate and power allocation

for the network and flow topology I in Fig. 2.1. We start with a scenario — Scenario 1

— in which all the sessions impose the same queuing delay requirement and have the

same preference for data rate in terms of their utility function. Therefore, the average

queueing delay requirement Ds for all of the sessions is initially set at 10ms; αs = 1

for all the sessions. A maximum power of 0.12W is set as a constraint as well. We

now compare the results of Algorithm II with the case of no delay requirements,

i.e., the algorithm derived in [Chi05], to see how the delay requirements would change

the rate-power allocations.

Fig. 2.3 shows the convergence of the rates of different sessions both for the case of

the algorithm with and without delay constraints. Comparing the rates of each indi-

vidual session obtained by Algorithm II (with delay constraints) with the rates ob-

tained by the algorithm in [Chi05], it is clear that the sessions running Algorithm II

reduced their data rates in order to achieve lower queueing delays based on the con-
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straints. Fig. 2.4 shows the transmitter powers at each of the links for the case with

delay constraints (Algorithm II) and the case of no delay constraints. As can be

seen from these plots, for the case with delay constraints (Algorithm II), the trans-

mitters at link 2 and link 4 are consuming slightly more power to handle the delay

requirements of the sessions.

Fig. 2.5 shows the achieved delay for each session. The requirement of 10ms delay

is achieved by all the sessions. The numerical values of these simulations are shown in

Scenario 1 in Table 2.1. Three other different delay requirements for Session 2 (8ms,

5ms, and 2ms) are also simulated and the results are presented as Scenarios 2, 3,

and 4 in Table 2.1. Session 2 is chosen for this experiment since it flows through the

largest number of links. It is also notable that the total queuing delay for Session 2

is the sum of the queuing delays of Sessions 1 and 3 because of the flow and link

topology. Therefore, Session 2 imposes the most difficult queuing delay requirement.

We see that, in order to achieve lower queuing delay for Session 2, link 2 increases

its transmission power (0.111 → 0.112 → 0.115 → 0.120) to increase its capacity.

Moreover, link 4 decreases its transmission power (0.060 → 0.059 → 0.058 → 0.051)

to lower its interference on links 2 and 3 since the delay requirement of Session 4

is already achieved and lowering the capacity of link 4 will not violate the delay

requirement of Session 4. In addition, we see that all the sessions in Scenarios 2-

4 have decreased their sending rate in order to obtain a lower queuing delay for

Session 2.

When the exact power allocation algorithm is used, the achieved data rates are

only slightly different from the rates achieved by the approximate power algorithm in

Algorithm II. Notice the comparison in Scenarios 1 and 2 of Table 2.1. The power
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and delay for the exact power allocation algorithm are essentially the same as those

in the approximate algorithm for these scenarios. We do not repeat these numbers for

space reasons. The condition dl ≥ 4β+1
μcl(P)

that is required for the approximate power

allocation to be more accurate holds in these scenarios.

2.4.2 Set B: Changing αs Together with the Delay Require-

ment

In the previous set of simulations, all of the sources kept αs = 1 in their utility

function. Now we consider the cases of allowing a utility to change its value of αs

in order to reflect its preference for a high data rate. In particular, we examine the

performance of Algorithm II as both the αs values and the delay constraints are

changed. First, we consider a situation in which Session 2 emphasizes a preference

for higher rate than the rest of the sessions. Specifically, we use αs = [1, 2, 1, 1]. As

Session 2 tightens its delay requirement in the Scenarios 5-8 depicted in Table 2.2,

it turns itself into a greedy source which requires both high rate and low delay.

Comparing the rate and power allocation results of Scenarios 5-8 with the rate and

power allocation results from Scenarios 1-4, one notices that Session 2 achieves a

higher data rate at the expense of lower data rates for other sessions and higher

power for the transmitter on link 2, while also satisfying its low delay requirement.

Furthermore, in Scenario 9, we consider a case of two sessions — Sessions 3-4 —

requiring lower delay than they require in Scenario 5. But since they set their αs

values to 1, they are not greedy as far as expecting high rate as well. Comparing the

results in Scenario 9 with those in Scenario 5, we see that Sessions 3-4, that require

lower delay, achieve it at the expense of a lower rate, and also a reduced rate for
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Session 2.

In Scenario 10 in Table 2.3, we consider the case where two sessions — Sessions

3-4 — require a higher rate but not very low delay and another session — Session 2

— requires lower delay but not a higher rate. Therefore Sessions 3-4 set their αs value

at 2 while the rest of the sessions keep it at 1. Comparing the results of Scenario 10

with those of Scenario 3, we infer that the higher rate requirements of Sessions 3-4 are

achieved at the expense of lower rates for other sessions while the delay requirement

of Session 2 is also met.

2.4.3 Set C: A Different Flow Topology

Simulations similar to Table 2.1 are generated for the network and flow topology II

in Fig. 2.2. The corresponding results are shown in Table 2.4. The same observations

that were made in Set A of the simulations can also be made here, i.e., we see

that tightening the delay requirement of Session 2 in Scenarios 11-14 imposes lower

rates on all the sessions and different power allocation for the transmitters. We also

emphasize another point by the network and flow topology II: the result of rate-power

allocation for any particular session is highly interdependent with the topology of the

other flows. For instance, Session 1 in flow topology II resembles Session 4 in flow

topology I. But the results of the power and rate allocations for Session 4 in the flow

topology I (see Table 2.1) is very different from the results for Session 1 in the flow

topology II (see Table 2.4).

In summary, these simulations demonstrate the potential benefits of Algorithm

II which provides distributed rate and power control for a multi-hop wireless net-

work while also providing average queueing delay bounds for sessions. Moreover, the
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simulations also show the potential for different sessions obtaining their preferences

for high rate or low delay. Our current research work involves the study of convexity

issues if the general SIR scenario is considered as well as the fairness and feasibility

of the algorithm developed here.

1

2
3

4

Figure 2.1: Network and flow topology I.

1
2

3
4

Figure 2.2: Network and flow topology II.
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Figure 2.3: Convergence for the rates of 4 sessions. Solid curves are for the case of
no delay constraint and dashed curves are for the case with delay constraints.
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Figure 2.4: Convergence for the transmission power of 4 links. Solid curves are for the
case of no delay constraint and dashed curves are for the case with delay constraints.

2.5 Remarks

We presented the problem of allocating resources of bandwidth and power in a

multi-hop wireless network in a NUM framework, specifically incorporating an average

queuing delay requirement of the sessions into the NUM problem. We transformed

the non-convex problem to a convex problem by a change of variable and assuming a

high SIR scenario. We presented a distributed iterative algorithm solving the NUM

problem. In particular, in our solution algorithm, both sources and links exchange

information allowing for the NUM problem to solve for the session rate, power of

transmitters, and delay share of each link in an iterative distributed manner. The

simulations showed the performance of the solution and comparisons with the previ-

ously developed algorithms and demonstrated that average queuing delay requirement

of the sessions were achieved.
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Table 2.1: Simulation results for network and flow topology I with αs = [1, 1, 1, 1]
Session #

1 2 3 4

Scenario 1
Delay Requirement (ms) 10.0 10.0 10.0 10.0
Delay Achieved (ms) 2.7 10.0 7.3 10.0
Data Rate (Kb/s) 946.5 200.4 254.3 369.2
Data Rate (Kb/s)
(exact power allocation)

946.6 200.5 254.4 368.9

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.111 0.120 0.060

Scenario 2
Delay Requirement (ms) 10.0 8.0 10.0 10.0
Delay Achieved (ms) 2.1 8.0 5.9 10.0
Data Rate (Kb/s) 921.9 195.7 248.4 362.5
Data Rate (Kb/s)
(exact power allocation)

922.1 195.7 248.5 362.5

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.112 0.120 0.059

Scenario 3
Delay Requirement (ms) 10.0 5.0 10.0 10.0
Delay Achieved (ms) 1.3 5.0 3.7 10.0
Data Rate (Kb/s) 843.5 179.9 228.7 338.8

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.115 0.120 0.058

Scenario 4
Delay Requirement (ms) 10.0 2.0 10.0 10.0
Delay Achieved (ms) 0.5 2.0 1.5 10.0
Data Rate (Kb/s) 413.4 83.9 105.3 199.5

Link 1 Link 2 Link 3 Link 4
Power (W) 0.116 0.120 0.120 0.051
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Table 2.2: Simulation results for network and flow topology I with αs = [1, 2, 1, 1]
Session #

1 2 3 4

Scenario 5
Delay Requirement (ms) 10.0 10.0 10.0 10.0
Delay Achieved (ms) 2.6 10.0 7.4 10.0
Data Rate (Kb/s) 786.0 317.6 199.0 295.1

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.118 0.120 0.056

Scenario 6
Delay Requirement (ms) 10.0 8.0 10.0 10.0
Delay Achieved (ms) 2.1 8.0 5.9 10.0
Data Rate (Kb/s) 764.7 310.2 194.6 289.9

Link 1 Link 2 Link 3 Link 4
Power 0.120 0.118 0.120 0.056

Scenario 7
Delay Requirement (ms) 10.0 5.0 10.0 10.0
Delay Achieved (ms) 1.3 5.0 3.7 10.0
Data Rate (Kb/s) 700.0 285.1 179.0 272.6

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.120 0.120 0.055

Scenario 8
Delay Requirement (ms) 10.0 2.0 10.0 10.0
Delay Achieved (ms) 0.5 2.0 1.5 10.0
Data Rate (Kb/s) 326.1 133.4 83.9 168.3

Link 1 Link 2 Link 3 Link 4
Power 0.112 0.120 0.120 0.050

Scenario 9
Delay Requirement (ms) 10.0 10.0 5.0 5.0
Delay Achieved (ms) 5.0 10.0 5.0 5.0
Data Rate (Kb/s) 835.4 305.6 187.0 268.8

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.118 0.120 0.058
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Table 2.3: Simulation results for network and flow topology I with αs = [1, 1, 2, 2]
Session #

1 2 3 4

Scenario 10
Delay Requirement (ms) 10.0 5.0 10.0 10.0
Delay Achieved (ms) 1.2 5.0 3.8 10.0
Data Rate (Kb/s) 773.1 119.9 283.8 381.2

Link 1 Link 2 Link 3 Link 4
Power (W) 0.105 0.108 0.120 0.060

Table 2.4: Simulation results for network and flow topology II with αs = [1, 1, 1, 1]
Session #

1 2 3 4

Scenario 11
Delay Requirement (ms) 10.0 10.0 10.0 10.0
Delay Achieved (ms) 6.5 10.0 10.0 3.5
Data Rate (Kb/s) 347.3 192.9 197.3 433.9

Link 1 Link 2 Link 3 Link 4
Power (W) 0.054 0.120 0.120 0.073

Scenario 12
Delay Requirement (ms) 10.0 8.0 10.0 10.0
Delay Achieved (ms) 5.0 8.0 10.0 3.0
Data Rate (Kb/s) 334.2 188.8 194.8 434.1

Link 1 Link 2 Link 3 Link 4
Power (W) 0.052 0.120 0.120 0.074

Scenario 13
Delay Requirement (ms) 10.0 5.0 10.0 10.0
Delay Achieved (ms) 3.2 5.0 10.0 1.8
Data Rate (Kb/s) 297.9 173.5 181.7 415.7

Link 1 Link 2 Link 3 Link 4
Power (W) 0.051 0.120 0.120 0.077

Scenario 14
Delay Requirement (ms) 10.0 2.0 10.0 10.0
Delay Achieved (ms) 1.3 2.0 10.0 0.7
Data Rate (Kb/s) 125.7 83.3 92.9 247.1

Link 1 Link 2 Link 3 Link 4
Power (W) 0.046 0.120 0.120 0.092
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CHAPTER 3

Quantization for Classification Accuracy
in High-Rate Quantizers

Quantization of signals is required for many transmission, storage and compression

applications. The original signal is quantized at the encoder side. At the decoder side,

a replica of the original signal that should resemble the original signal in some sense is

recovered. Present quantizers make an effort to reduce the distortion of the signal in

the sense of reproduction fidelity. Consider scenarios in which signals are generated

from multiple classes. The encoder focuses on the task of quantizing the data without

any regards to the class of the signal. The quantized signal reaches the decoder where

not only the recovery of the signal should take place but also a decision should be

made on the class of the signal based on the quantized version of the signal only. In

this dissertation, we study the design of such a vector quantizer that is optimized for

the task of classification at the decoder. We define the distortion to be the symmetric

Kullback-Leibler (KL) divergence measure between the conditional probabilities of

class given the signal before and after quantization. A high-rate analysis of the

quantizer is presented and the optimum point density of the quantizer for minimizing

the symmetric KL divergence is derived. Furthermore, tradeoff between classification

46



www.manaraa.com

47

accuracy and reproduction fidelity is studied and a point density function for the case

of tradeoff is presented. Effects of a mismatched distortion measure is also derived and

shown that for reduced complexity the original distortion measure can be replaced

by a weighted mean square error (WMSE) distortion measure. The performance of

these methods on synthetically generated data and real data set is examined and

observed to be superior in the task of classification of signals at the decoder with

lower reproduction fidelity as tradeoff.

3.1 Overview of Quantization and Classification

Quantization of signals has been extensively studied [GN98, GG92]. The qual-

ity of a quantizer is measured by the similarity of the reproduction signal with the

original signal. This similarity is measured by a distortion measure which is defined

differently for different purposes. Some of the most common distortion measures are

Mean Squared Error (MSE), weighted mean square error (WMSE) and log spectral

distortion (LSD) [GR95]. These measures usually guarantee the fidelity of the repro-

duction but heed less attention to other utilizations of the reproduction signal, for

instance detection or classification of the signal at the decoder. Several studies have

been done in combining detection and quantization with different distortion measures

[Kas77, SS77, GH03]. In [VB10], the authors study quantization for detection in a sen-

sor network scenario. In [VV08], the quantization of prior probabilities for hypothesis

testing is presented. These studies have made significant contributions to the design

of quantizers for the purpose of detection. However, most of them are applicable to

binary classification, i.e., binary detection or hypothesis testing, and either are not

expandable to multiple class problems or the extension is not straightforward, to the
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best of our knowledge. There has been some research on combining quantization and

classification. In [PPG+96], the authors extend the distortion measure for the Lloyd

algorithm by a Bayes risk term which is defined by a weighted cost of classification

error. Moreover, in [LJ07], the authors proposed a method for joint quantization and

classification in distributed quantizers in which the quantizers sequentially process an

input and communicate with each other. Despite the aforementioned contributions,

the theory of high-rate quantization for the purpose of classification still remains

somewhat underdeveloped compared to quantization for detection, or quantization

theory in general.

In this dissertation, we consider scenarios in which signals are generated from

multiple classes. The encoder focuses on the task of quantizing the data without any

regards to the class of the signal. The quantized signal reaches the decoder where not

only the recovery of the signal should take place but also a decision is to be made on

the class of the signal based on the quantized version of the signal only. We study the

design of such vector quantizer that is optimized for the task of classification at the

decoder. We adopt a high-rate quantizer design approach [GH03, GR95, VB10]. A

high-rate quantizer is an optimal quantizer in the sense of minimizing the distortion

with unlimited quantization levels. Therefore an optimal point density function which

represents how codepoints are distributed in the space is derived. We choose the

distortion to be the symmetric Kullback-Leibler (KL) divergence measure between

the conditional probabilities of class given the signal before and after quantization.

Our approach in using the KL divergence measure is different than some other related

research, notably [GH03, LJ07]. To be specific, others have tried to minimize the loss

in the discrimination between the two classes due to quantization. On the other hand,
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we try to minimize the aggregate discrimination of the conditional probabilities of

classes given the signal before and after quantization, i.e., equation (3.2). Intuitively,

it means that we will make sure that the conditional probability of the classes given

the data undergoes the least amount of change due to quantization. The tradeoff

between the reproduction fidelity and classification accuracy at the decoder is also

examined.

In the following we derive the optimum point density function using high-rate

theory for a quantizer with the new distortion measure in Section 3.2. In Section

3.3, we design a quantizer that performs a tradeoff between classification accuracy

and reproduction fidelity. In Section 3.5, for some signal examples we will compare

the optimal point densities developed in this research with the MSE point density

and compare the classification results at the decoder. We observe that the quantizer

based on the KL divergence point density outperforms the traditional quantizer based

on the MSE point density with regards to the classification accuracy. Some of the

results of this chapter appeared in [DM11].

3.2 Classification Based Quantizer Design

Consider the input to an encoder, x, to be an n dimensional signal in D ⊂ Rn

with probability density function p(x). The output of the encoder is Q(x) which

maps x to an output vector x̂ which takes values from X̂ = {x̂1, ...x̂2B} where B is

the number of bits in the quantizer. The expected distortion that is introduced by

the quantizer can be expressed as

Ed(Q) =

∫
x∈D

d(x, x̂)p(x)dx, (3.1)
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where d is the distortion measure. The problem of designing a quantizer is to minimize

the expected distortion between the original signal, x, and the reconstructed signal,

x̂. Since our main objective is to design a quantizer that improves the classification

accuracy of the signal at the decoder, our distortion measure is defined as the sym-

metric KL divergence measure between the conditional probabilities of class given

the signal before and after quantization. The symmetric KL divergence is always

non-negative, i.e., d(x, x̂) ≥ 0. Therefore d is defined as

d(x, x̂) = D

(
P (C|x)||P (C|x̂)

)
+D

(
P (C|x̂)||P (C|x)

)
=

C∑
j=1

[
P (Cj|x) log P (Cj|x)

P (Cj|x̂) + P (Cj|x̂) log P (Cj|x̂)
P (Cj|x)

]
, (3.2)

where P (C|x) and P (C|x̂) are conditional probabilities of the classes given the data

before and after quantization, respectively. We follow high-rate theory analysis in

which an optimal quantizer in the sense of minimizing the defined distortion is derived.

The optimal quantizer is represented by an optimal point density function which

determines where in the space should the codepoints lie. This approach is similar to

the one in [GR95]. If we perform a Taylor series expansion of d(x, x̂) about x = x̂

and ignore all the terms but the first three terms, we conclude

d(x, x̂) ≈ d(x̂, x̂) + d(x̂)(x− x̂) +
1

2
(x− x̂)TD(x̂)(x− x̂) (3.3)

where d(x̂) is an n-element row vector whose elements are defined by

dj(x̂) =
∂d(x, x̂)

∂xj

∣∣∣∣∣
x=x̂

(3.4)

and D(x̂) is an n× n element matrix whose elements are

Dj,k(x̂) =
∂2d(x, x̂)

∂xj∂xk

∣∣∣∣∣
x=x̂

. (3.5)
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Based on the definition of the distortion d in (3.2) the first term in (3.3) is equal to

zero. Furthermore, by calculations similar to the ones in Section 3.2.1 it can easily

be seen that the second term is also equal to zero (See Appendix A). If we substitute

the non-zero term from (3.3) into (3.1) we obtain

Ed(Q) ≈
∫
x∈D

1

2
(x− x̂)TD(x̂)(x− x̂)p(x)dx. (3.6)

Let us define Si = {x ∈ D|Q(x) = x̂i}. Therefore, each data point that lies in the

region Si is mapped into x̂i as a result of the quantization. Therefore (3.6) can be

written as

Ed(Q) ≈
∑
x̂i∈X̂

∫
x∈Si

1

2
(x− x̂i)

TD(x̂i)(x− x̂i)p(x)dx. (3.7)

Assuming a high-rate quantizer, we reason that p(x) ≈ p(x̂i); ∀x ∈ Si. Hence

Ed(Q) ≈
∑
x̂i∈X̂

p(x̂i)

∫
x:x+x̂i∈Si

1

2
xTD(x̂i)xdx. (3.8)

The volume of the Voronoi region Si can be expressed as vol(Si) =
∫
x∈Si

dx. And if

the probability of vector x lying in region Si is Pi then

Pi = Probability(x ∈ Si) ≈ p(x̂i)vol(Si). (3.9)

Using this definition and the following equality from [GR95]

∫
x∈Si

xTDxdx = vol(Si)
n

n+ 2

(
vol(Si)

2

κ2
n

|D|
)1/n

, (3.10)
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where κn is the volume of n-dimensional unit sphere, equation (3.8) can be expressed

as

Ed(Q) ≈
∑
x̂i∈X̂

Pi

vol(Si)

⎛
⎜⎜⎜⎝vol(Si)

n

2(n+ 2)

(
vol(Si)

2

κ2
n

|D(x̂i)|
)1/n

⎞
⎟⎟⎟⎠ =

∑
x̂i∈X̂

n

2(n+ 2)
Pi

(
vol(Si)

2

κ2
n

|D(x̂i)|
)1/n

Let us define the point density function

λ(x) = lim
B→∞

1

2Bvol(Si)
, (3.11)

which represents the limiting density of the codebook vectors around x, please refer

to [GR95, Ger79]. Therefore

Ed(Q) ≈ n

2(n+ 2)

∑
x̂i∈X̂

p(x̂i)vol(Si)(
|D(x̂i)|

(2Bλ(x̂i)κn)2
)1/n ≈

n2−2B/nκ
−2/n
n

2(n+ 2)

∫
x∈D

λ−2/n(x)|D(x)|1/np(x)dx. (3.12)

In order to minimize the approximation in (3.12) with respect to λ(x) and subject to

the unit integral property of λ(x) (see [Ger79]) we use Holder’s inequality to derive

the optimum point density function as

λKL(x) =

(
|D(x)|1/np(x)

)n/(n+2)

∫
x∈D

(
|D(x)|1/np(x)

)n/(n+2)

dx

(3.13)

3.2.1 Derivation of Components of D(x)

Based on the derivation of optimal point density function λKL(x) from the previous

section, we need to calculate the terms of D(x) for our choice of distortion measure,
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in (3.2). For the elements of D(x) we have

Di,k(x̂) =
∂

∂xi

∂

∂xk

C∑
j=1

[
P (Cj|x) log P (Cj|x)

P (Cj|x̂)+ P (Cj|x̂) log P (Cj|x̂)
P (Cj|x)

] ∣∣∣∣∣∣∣
x=x̂

. (3.14)

We calculate each of the two terms in the summation in (3.14) separately as follows

∂

∂xi

∂

∂xk

(
P (Cj|x) log P (Cj|x)

P (Cj|x̂)
)

=

∂

∂xi

[
log

P (Cj|x)
P (Cj|x̂)

∂

∂xk

P (Cj|x) + P (Cj|x) ∂

∂xk

log
P (Cj|x)
P (Cj|x̂)

]
=

∂

∂xi

[(
∂

∂xk

P (Cj|x)
)(

log
P (Cj|x)
P (Cj|x̂) + 1

)]
=

(
∂

∂xi

∂

∂xk

P (Cj|x)
)(

log
P (Cj|x)
P (Cj|x̂)+1

)
+

1

P (Cj|x)
(

∂

∂xk

P (Cj|x)
)(

∂

∂xi

P (Cj|x)
)
,

(3.15)

and

∂

∂xi

∂

∂xk

(
P (Cj|x̂) log P (Cj|x̂)

P (Cj|x)
)

=

P (Cj|x̂)
(P (Cj|x))2

((
∂

∂xk

P (Cj|x)
)(

∂

∂xi

P (Cj|x)
)
− P (Cj|x) ∂

∂xi

∂

∂xk

P (Cj|x)
)
.

(3.16)

Now, by substituting (3.15) and (3.16) into (3.14) we conclude

Di,k(x̂) =
C∑

j=1

[
2

P (Cj|x)
(

∂

∂xk

P (Cj|x)
)(

∂

∂xi

P (Cj|x)
)] ∣∣∣∣∣∣∣

x=x̂

. (3.17)

In this dissertation, we assume a generative model for the classifier. Hence, p(x) and

p(x|Cj) are known a priori. Therefore, we use Bayes rule, P (Cj|x) = P (Cj)p(x|Cj)

p(x)
, to
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calculate the terms ∂
∂xi

P (Cj|x) and ∂
∂xk

P (Cj|x) in (3.17) as follows

∂

∂xi

P (Cj|x) =
∂

∂xi

P (Cj)p(x|Cj)

p(x)
= P (Cj)

∂
∂xi

p(x|Cj).p(x)− p(x|Cj)
∂p(x)
∂xi

(p(x))2
, (3.18)

and similarly for ∂
∂xk

P (Cj|x). By substituting this into (3.17) and calculating at

x = x̂ we will have

Di,k(x̂) =
C∑

j=1

P (Cj)

⎡
⎢⎢⎢⎣2

∂
∂xi

p(x|Cj).
∂

∂xk
p(x|Cj)

p(x)p(x|Cj)
−

2 ∂
∂xi

p(x|Cj).
∂

∂xk
p(x)− 2 ∂

∂xk
p(x|Cj).

∂
∂xi

p(x)

(p(x))2
+ 2

∂
∂xi

p(x). ∂
∂xk

p(x).p(x|Cj)

(p(x))3

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
x=x̂

.

(3.19)

Hence for the diagonal elements of D(x), we obtain

Di,i(x̂) =

C∑
j=1

P (Cj)

⎡
⎢⎢⎢⎣2

(
∂
∂xi

p(x|Cj)
)2

p(x)p(x|Cj)
− 4

∂
∂xi

p(x|Cj).
∂
∂xi

p(x)

(p(x))2
+ 2

p(x|Cj)

(
∂
∂xi

p(x)

)2

(p(x))3

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
x=x̂

.

(3.20)

Eventually, to conclude the final expression for the point density we need to calculate

the determinant |D(x)| and substitute it in (3.13).

3.3 Tradeoff between Classification Accuracy and

Reproduction Fidelity

We observed in the previous section that by defining a new distortion measure

we were able to derive an optimal quantizer in the sense of minimizing the KL di-
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vergence between conditional probabilities of classes given the data before and after

quantization. In this section we address the tradeoff between reproduction fidelity

and classification accuracy. For this purpose we define the distortion measure as

follows

d(x, x̂) = αdMSE(x, x̂) + (1− α)dKL(x, x̂) (3.21)

where dMSE = ‖x − x̂‖2, i.e., reproduction fidelity measure, and dKL is defined as in

the previous section, i.e., the symmetric KL divergence measure. Furthermore, α is a

value between zero and one that determines how much weight is put on each measure.

Following similar steps as in Section 3.2 we conclude that the optimal point density

function is

λTradeoff(x) =

((
α|DMSE(x)|1/n + (1− α)|DKL(x)|1/n

)
p(x)

)n/(n+2)

∫
x∈D

((
α|DMSE(x)|1/n + (1− α)|DKL(x)|1/n

)
p(x)

)n/(n+2)

dx

,

(3.22)

where DMSE(x), and DKL(x) are defined similar to D(x) in (3.5).

3.4 Optimal Mismatched Distortion Measure

In this section, we study the performance of a quantizer which is trained by mini-

mizing the distortion d1(x, x̂) but measured by distortion d2(x, x̂). The rationale for

such analysis is scenarios in which we would like to design a quantizer with distortion

measure of relevance being d2 but for practical and implementation reasons we choose

to quantize with distortion measure d1. The expression for the distortion (measure
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by d2) is as follows

Ed2(Q1) ≈ 2−2B/nκ
−2/n
n

2(n+ 2)

∫
x∈D(|D1(x)|1/np(x))n/(n+2)tr(D−1

1 (x)D2(x))dx

(
∫
x∈D(|D1(x)|1/np(x))n/(n+2))−2/n

(3.23)

Interested reader can refer to ([GR95], Section II) for details on derivation of the latter

expression. Let us study the derivation of a weighted mean square error (WMSE) dis-

tortion measure as the choice for d1. A WMSE distortion measure can be represented

as

dWMSE(x, x̂) = (x− x̂)T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(x) 0

w2(x)

. . .

0 wn(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(x− x̂) (3.24)

By comparing this expression with the quadratic part of equation (3.3), we conclude

that DWMSE(x) = 2 diag(w1(x), w2(x), . . . , wn(x)).

If D1 represents a WMSE distortion measure and therefore has a diagonal matrix

form, we will show that optimal D1(x) that minimizes (3.23) is

DWMSE(x) = diag((D2(x))1,1, (D2(x))2,2, . . . , (D2(x))n,n). (3.25)

In other words, the optimal WMSE D matrix consists of the diagonal elements of

D2(x).

Let us start by observing that in equation (3.23) if elements of D1 are scaled by
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a factor of �, Ed2(Q1) will not be modified. Details follow: If D′
1(x) = D1(�x)

(|D′
1(x)|1/np(x))n/(n+2)tr(D′−1

1 (x)D2(x))

((|D′
1(x)|1/np(x))n/(n+2))−2/n

=

(�|D1(x)|1/np(x))n/(n+2)tr(�−1D−1
1 (x)D2(x))

((�|D1(x)|1/np(x))n/(n+2))−2/n
=

�n/(n+2)�−1

(�n/(n+2))−2/n

(|D1(x)|1/np(x))n/(n+2)tr(D−1
1 (x)D2(x))

((|D1(x)|1/np(x))n/(n+2))−2/n
=

�−2/(n+2)

�−2/(n+2)

(|D1(x)|1/np(x))n/(n+2)tr(D−1
1 (x)D2(x))

((|D1(x)|1/np(x))n/(n+2))−2/n
=

(|D1(x)|1/np(x))n/(n+2)tr(D−1
1 (x)D2(x))

((|D1(x)|1/np(x))n/(n+2))−2/n
. (3.26)

Therefore minimizing equation (3.23) is equivalent to the following constrained min-

imization problem:

min
D1(x)

∫
x∈D

(|D1(x)|1/np(x))n/(n+2)tr(D−1
1 (x)D2(x))dx

subject to:

∫
x∈D

(|D1(x)|1/np(x))n/(n+2) = 1. (3.27)

Substituting for the elements of D1(x) and introducing the Lagrange multiplier λ we

conclude the problem to be

min
D1(x)

∫
x∈D

([
n∏

i=1

wi(x)]
1/np(x))n/(n+2)

n∑
i=1

(D2(x))i,i
wi(x)

dx+

λ

∫
x∈D

([
n∏

i=1

wi(x)]
1/np(x))n/(n+2)dx. (3.28)

Following standard calculus of variations methods, we introduce the alternate solution

to be Wi(x) = wi(x)+εiηi(x). By substituting the alternate solution into the problem

we will have

I(ε1, ε2, . . . , εn) =

∫
x∈D

([
n∏

i=1

wi(x) + εiηi(x)]
1/np(x))n/(n+2)

[
n∑

i=1

(D2(x))i,i
wi(x) + εiηi(x)

+ λ

]
dx.

(3.29)
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Therefore the optimal wi(x) is found by solving the following system of equations

∂I

∂εj

∣∣∣∣∣
εj=0,∀j

= 0 (3.30)

Let us start by calculating the partial derivatives as follow

∂I

∂εj
I(ε1, ε2, . . . , εn) =

1

n+ 2
(wj(x) + εiηj(x))

1
n+2

−1ηj(x)([
n∏

i �=j=1

wi(x) + εiηi(x)]
1/np(x))n/(n+2)

[
n∑

i=1

(D2(x))i,i
wi(x) + εiηi(x)

+ λ

]
−

([
n∏

i=1

wi(x) + εiηi(x)]
1/np(x))n/(n+2) ηj(x)(D2(x))j,j

(wj(x) + εjηj(x))2
(3.31)

Applying the conditions εi = 0, ∀i will reduce the equation to

∂I

∂εj
I(ε1, ε2, . . . , εn)

∣∣∣∣∣
εj=0,∀j

=

1

n+ 2
(wj(x))

1
n+2

−1ηj(x)([
n∏

i �=j=1

wi(x)]
1/np(x))n/(n+2)

[
n∑

i=1

(D2(x))i,i
wi(x)

+ λ

]
−

([
n∏

i=1

wi(x)]
1/np(x))n/(n+2)ηj(x)(D2(x))j,j

(wj(x))2
=

ηj(x)([
n∏

i �=j=1

wi(x)]
1/np(x))n/(n+2)wj(x))

1
n+2

−2

[
1

n+ 2
wj(x)

[
n∑

i=1

(D2(x))i,i
wi(x)

+ λ

]
− (D2(x))j,j

]
(3.32)

And finally applying the condition of the latter equation be equal to zero will result

in

1

n+ 2
wj(x)

[
n∑

i=1

(D2(x))i,i
wi(x)

+ λ

]
− (D2(x))j,j = 0 (3.33)
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It is trivial to verify that wi(x) =
2(D2(x))i,i

λ
, ∀i is the solution to this system of

equations. As we mentioned before, since the scaling of the elements ofD1(x) does not

matter, the main result is that the optimal diagonal matrix D1(x) that approximates

D2(x) consists of the diagonal elements of D2(x), i.e., (D2(x))i,i, ∀i.

3.5 Simulations

In this section, we will present a few examples to visualize the effect of different

choices of distortion measure on how the optimal point density looks like and behaves

for 1-D, and 2-D synthetic data as well as a real data set. Specifically, we are interested

in the behavior of the point density function around the boundaries of classification.

Furthermore, we will study the effect of the tradeoff parameter, i.e, α, introduced in

Section 3.3, on the point density function. In this section we present some examples

to demonstrate the efficacy of the vector quantizer designed in the previous sections.

Specifically, we show the reader several examples of either synthetic or real world

signals which are the subjects of quantization and classification at the decoder. For

the choice of synthetic data we choose Gaussian signals with different dimensions. For

the choice of real world signal we use the Iris Data Set from the well known database

in the pattern recognition literature, UCI’s Machine Learning Repository. The data

set contains 3 classes of 50 instances each, where each class refers to a type of iris

plant.

3.5.1 Scalar Signals

In this section, we will present a few examples to visualize the effect of differ-

ent choices of distortion measure on how the optimal point density looks like and
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behaves. Specifically, we are interested in the behavior of the point density func-

tion around the boundaries of classification. Furthermore, we will study the effect of

the tradeoff parameter, i.e, α, introduced in Section 3.3, on the point density function.

Example 1: As a simple example, let us assume a one-dimensional signal case.

The input signal to the encoder is generated from two classes. Each class is defined

with the following conditional PDFs

p(x|C1) =
1√
2π

⎛
⎜⎜⎜⎝0.8

0.5
e
− (x−3)2

2×0.52 +
0.2

0.4
e
− (x+3)2

2×0.42

⎞
⎟⎟⎟⎠,

p(x|C2) =
1√
2π

⎛
⎜⎜⎜⎝0.2

0.3
e
− (x−1)2

2×0.32 +
0.4

0.5
e
− (x+1)2

2×0.52 +
0.4

0.3
e
− (x+5)2

2×0.32

⎞
⎟⎟⎟⎠,

and therefore p(x) = P (C1)p(x|C1) + P (C2)p(x|C2). The plots for these PDFs are

presented in Figure 3.1(a) with the assumption P (C1) = P (C2) = 0.5. Here we

assume a naive Bayes classifier and therefore the decision boundaries for classes are

based on P (C1)p(x|C1) ≷ P (C2)p(x|C2). These decision boundaries are marked as

dashed vertical lines in the figures. We will look at λKL and λTradeoff. For comparison

purposes, we also included the λMSE (i.e. DMSE(x) = 2I). All of these optimum point

densities are plotted in Figure 3.1. It is clear that λKL allocates more points to the

boundaries of each class (dashed vertical lines) and less points as it moves away from

the boundaries of classes. On the other hand λMSE allocates points based on the

distribution of the signal regardless of the boundaries for classification. Furthermore,

λTradeoff, depending on the value of α which determines the amount of tradeoff behaves
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intuitively, i.e., for small α it behaves more like λKL and less like λMSE. In other words,

it is easy to note that as we move the weight of the tradeoff from KL divergence

to MSE, i.e., increasing α, the points of the point density function move from the

boundaries to the regions with high probability of signal occurrence.
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(a) Top and Middle: P (x|C1) and P (x|C2) Conditional

PDFs of synthetic data extracted from Class 1 and 2.

Bottom: Combined PDF of the source data.
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Middle: α = 0.8 and Bottom: MSE case

Figure 3.1: Example 1: Synthetic 1-D Signal, PDFs with more separation.
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Example 2: In this example, we consider a similar one dimensional case where

there exists an overlap of the peaks of the PDFs between the two classes, specifically

each class is defined with the following conditional PDFs

p(x|C1) =
1√

2π0.32

⎛
⎜⎜⎜⎝0.5e

− (x−3)2

2×0.32 + 0.2e
− (x+3)2

2×0.32

⎞
⎟⎟⎟⎠+ 0.3

1√
2π0.12

e
− (x−1)2

2×0.12 ,

p(x|C2) =
1√

2π0.32

⎛
⎜⎜⎜⎝0.2e

− (x−1)2

2×0.32 + 0.4e
− (x+1)2

2×0.32 + 0.4e
− (x+5)2

2×0.32

⎞
⎟⎟⎟⎠,

and therefore the overlap occurs at x = 1 as shown in Figure 3.2(a). The corre-

sponding point density functions are depicted in Figure 3.2. Similar conclusions as

those made regarding Example 1 apply in this example. It is notable that λKL puts

emphasis on the region where the overlap of the peaks of the two classes occurs by

forcing more codebook points in order to alleviate the adverse effects of this overlap

on classification.
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(a) Top and Middle: P (x|C1) and P (x|C2) Conditional

PDFs of synthetic data extracted from Class 1 and 2.

Bottom: Combined PDF of the source data.
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Figure 3.2: Example 2: Synthetic 1-D Signal, PDFs with more overlap.
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To verify that the newly derived point densities actually perform better in clas-

sification accuracy at a decoder we develop the following experiment. We generate

synthetic data based on the source PDF, i.e., p(x). Then we design random code-

books based on λKL, λMSE, and λTradeoff and compare the results for the different cases.

Since we assume that the encoders do not perform any classification, the encoding is

solely based on the MSE. Since in each experiment we have a random codebook we

repeat the experiments 20 times and report the average results to generate a more

meaningful and code independent comparison measure. The results for the signal

model presented in Example 1 are presented in Table 3.1.

Table 3.1: Example 1: Classification Error(%) and Distortion(dB) results for the

signal presented in Example 1 - Please refer to Figure 3.1

λKL λTradeoff α = 0.2

Bits % dB % dB

10 0.0027 -8.7481 0.0053 -41.6524

8 0.0246 -6.8633 0.0662 -29.9626

6 0.0914 -4.1752 0.3603 -18.1660

λTradeoff α = 0.8 λMSE

Bits % dB % dB

10 0.0174 -43.3311 0.0482 -43.6344

8 0.1068 -31.7181 0.1476 -31.6691

6 0.4015 -19.6222 0.4507 -20.3667

It is easy to see that the deployment of codebooks based on the symmetric KL

divergence introduces a considerable improvement in the classification results. This is
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at the expense of introducing more distortion. On the other hand, it is very notable

that by introducing the slightest amount of tradeoff, e.g., α = 0.2, the distortion result

improves considerably while keeping classification results better than those provided

by codebooks based on λMSE. Furthermore, the results for the signal model presented

in Example 2 are presented in Table 3.2 with similar conclusions regarding the results.

Please note that we used a different number of bits in this example. Because of the

complex nature of the signal model, more bits are required to design a codebook that

represents the optimal point density function.

Table 3.2: Example 2: Classification Error(%) and Distortion(dB) results for the

signal presented in Example 2 - Please refer to Figure 3.2

λKL λTradeoff α = 0.2

Bits % dB % dB

12 0.0061 -14.5497 0.0120 -54.1325

10 0.0281 -10.5105 0.0329 -41.9583

8 0.0908 -7.0685 0.1511 -29.8545

λTradeoff α = 0.8 λMSE

Bits % dB % dB

12 0.0126 -56.8055 0.0295 -57.5876

10 0.0553 -44.7926 0.1302 -45.4882

8 0.4179 -32.5680 0.5571 -33.8399
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3.5.2 Two Dimensional Signals

In this section, we look at a two dimensional signal as an example. The signal

is drawn from three 2-D gaussian distributions. Each 2-D gaussian represents one

possible class of the signal. This is shown in Figure 3.3 .
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Figure 3.3: (a)-(c) Conditional PDF of 2-D synthetic data extracted from 3 Classes

(d) Combined PDF of the source data.

The corresponding point densities for MSE distortion (λMSE), symmetric KL di-

vergence distortion (λKL developed in Section 3.2), and the diagonalD approximation

of the symmetric KL divergence distortion (λKLDiag developed in Section 3.4) are pre-



www.manaraa.com

68

sented in Figure 3.5. As can be seen from the figure, λMSE puts emphasis on where the

signal is more probable. On the other hand λKL only puts emphasis on the intersec-

tion of the class boundaries. Similar to the scalar example, we generated codebooks
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Figure 3.4: Point Density Functions for the MSE, KL, and Diagonal KL for 2-D signal
presented in Figure 3.3.

based on different point densities and evaluated the performance of each quantizer.

The classification results are presented in Table 3.3. It is clear that λKL performs

better than λMSE in the classification task. On the other hand the distortion is infe-

rior for λKL as would be expected. Furthermore, the performance of λKLDiag is very

similar to the performance of λKL.
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Table 3.3: 2-D Example: Classification Error(%) and Distortion(dB) results for the
signal presented in Figure 3.3

λKL λKLDiag

Bits % dB % dB
15 0.0012 -21.5656 0.0014 -21.0803
14 0.0017 -19.4565 0.0018 -19.1360
12 0.0033 -15.3555 0.0036 -15.1665

λKL-Sum-Square λMSE

Bits % dB % dB
15 0.0015 -20.3405 0.0024 -29.5487
14 0.0020 -18.8674 0.0032 -27.2438
12 0.0037 -15.4987 0.0059 -24.4403

3.5.3 Real Data Set

In this section, we compare the performance of the developed quantization algo-

rithm with the MSE quantization in the task of classification at the decoder. The

data set that we use is the iris data set from UCI Machine Learning Repository. The

iris data set consists of 4 attributes of three classes of the iris plant. There are 50

instances of each class. The attributes are petal and sepal length and width.

Simulations for 2 attributes of the iris plant To demonstrate the performance

of the classification at the decoder, for presentation purposes we first proceed with two

out of four attributes. This choice will make the explanation of our method easier to

represent with plots and graphs.We divide 50 instances of each class into a partition

of 30 instances for training and 20 instances for testing. We do this partitioning

randomly and repeat the experiment 10 times. We fit a two dimensional Gaussian to

each class. Figure 3.5(a) shows one of these partitionings and the Gaussians that fit

three classes. Therefore knowing the probability density function of the signal, and the

conditional probability density function of the signals given each class, we calculate
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the point density function of the optimal quantizer from Equation 3.13. Furthermore,

we generate random codebooks based on the point density function. One example of

such random codebooks is presented in Figure 3.5(b). As we observed in the synthetic

data examples, the MSE quantizer puts the codebook points at where the signal is

and the KL quantizer puts the codebook points at the boundary of classes. We repeat

generating random codebooks 100 times in each trial, and average the classification

error and the distortion over the 100 instances.

The classification error and distortion results are presented in Table 3.4. As was

expected the KL quantizer performs slightly better than MSE quantizer in the task

of classification at the decoder.

Simulations for 4 attributes of the iris plant Now we present the classifica-

tion results for all the four attributes of the iris database. To apply the quantization

scheme that we designed in Section 3.2, we need to generate a random codebook

based on the analytical expression for point density function (see equation 3.13).

This task entails analytically calculating all the components for an n × n matrix

D(x). Closely looking at the analytical expressions for components of D(x) in equa-

tions 3.19-3.20, we observe that this calculation involves calculating first and second

derivatives of a probability density function p(x) and conditional probability density

functions p(x|Ci). For example, for the iris simulations, these probability density

functions are the probabilistic model representations of iris dataset attributes and

are derived from a 4-dimensional Gaussian Mixture Model fit to the the iris dataset.

We were able to follow these aforementioned steps with the help of the Symbolic

Math Toolbox of MATLAB for 2-dimensional signals (2 attributes of the iris plant)
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but we were not successful in doing these calculations for 4-dimensional signals (all

4 attributes of the iris plant). Therefore, to proceed with our simulation for all four

attributes of the iris signal we apply numerical methods for calculating the derivatives

of functions. We applied the simple finite difference approximation which is a simple

two point approximation for derivative as in

u′(xi) ≈ u(xi +Δx)− u(xi)

Δx
. (3.34)

The classification error and distortion results are presented in Table 3.5. The results

are not far from expectations. The higher the number of bits, the better the classi-

fication result and the distortion for all three classification schemes. Again, the KL

quantizer performs better than the diagonal KL which itself performs better than the

MSE quantizer. Furthermore, as we expected the distortion performance is better

for the MSE quantizer. By introducing a trade-off factor in our KL quantizer we can

improve the distortion while maintaining a good classification.

Table 3.4: Iris Data Set: Classification Error(%) and Distortion(dB) - Two attributes
λKL λKLDiag λMSE

Bits % dB % dB % dB
7 2.2300 -13.2085 3.1950 -16.2386 2.3033 -19.8871
8 1.8583 -15.2203 2.4417 -19.2625 1.9600 -22.8047
9 1.6950 -17.1609 1.9333 -22.2294 1.7417 -25.7076

Table 3.5: Iris Data Set: Classification Error(%) and Distortion(dB) - Four attributes
λKL λKLDiag λMSE

Bits % dB % dB % dB
7 8.1023 0.4721 8.1649 0.4968 12.7641 -6.3498
8 5.7673 -1.1981 5.9978 -1.0239 9.4306 -7.9476
9 5.000 -2.6135 4.9925 -2.6071 7.9290 -9.5392
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3.6 Remarks

We presented a solution for quantization of signals for the purpose of obtain-

ing a more accurate classification at the decoder. We employed high-rate theory for

quantizer design. Therefore an optimal point density function that determines where

the codepoints should lie in the space was derived. We chose the symmetric KL di-

vergence between the conditional probabilities of classes given data before and after

quantization as our distortion measure. Furthermore, we studied the tradeoff be-

tween classification accuracy and reproduction fidelity and presented a point density

function for the case of tradeoff. We analyzed the effects of a mismatched distortion

measure and showed that for reduced complexity the original distortion measure can

be replaced by a weighted mean square error (WMSE) distortion measure. We ex-

amined the performance of these methods on synthetically generated data and real

data set and observed that they were superior in the task of classification of signals

at the decoder with lower reproduction fidelity as tradeoff.
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Figure 3.5: Iris Data
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CHAPTER 4

Cross-Layer Effects of Network Utility
Maximization and Quantization

In Chapter 2 of this dissertation, we studied the problem of allocating network

resources such as bandwidth and power in a multi-hop wireless network, primarily

for the purpose of achieving a good throughput and low average queuing delay. The

solution to this problem called for the sources and links to update their transmission

rate or power based on either locally measurable messages or feedback sent from other

sources and links through a flooding protocol. The solution entailed power control in

the physical layer and congestion control in the transport layer. See Figure 4.1.

In Chapter 3 of this dissertation, we designed a quantization method that is

optimized for the task of accurate classification of the reconstructed signal at the

decoder. The solution entailed moving away from the traditional mean square error

measure for distortion and to introduce the symmetric Kullback-Leibler divergence

measure. The quantizer is in the presentation layer of a communication network

(Figure 4.1).

In this chapter, we would like to demonstrate that solutions to these two important

problems can be combined to devise a communication system that not only optimizes

74



www.manaraa.com

75

Figure 4.1: Network Layers and the Optimization Algorithms.

the rate of transmission and power of transmitters but also deploys a quantizer that

is optimized in the task of classification at the decoder.

Consider scenarios where signals gathered from sensors are being transmitted in

a multi-hop wireless network. These signals require timely delivery of their content

to the receivers. The capacity of the links puts a cap on the maximum allowed

transmission rate, therefore the signals need to be quantized efficiently. Furthermore,

at the receivers we desire not only the reconstruction of the signals but also the

preservation of the properties of the signal which ensure accurate classification. In

this scenario, the quantizer in the presentation layer should be designed based on the

optimization criteria developed in Chapter 3. The message passing and convergence

of the sub-gradient method follow the theory developed in Chapter 2 which involved

power control in the physical layer and congestion control in the transport later.
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Furthermore, the achievable data rates on wireless network links will constrain the

bits/vector rate that is used in the quantization. Therefore, feedback from the network

that would determine the data rate of a source would also affect the bits/vector rate

for quantization purposes.

In the following, we demonstrate how we combine the algorithms developed in

the previous chapters. We use some of the examples from the previous chapters for

the choice of network topology and the same parameters for the NUM optimization

problem. Furthermore we use the same signals (four attributes of iris plant) as the

signal of interest to transmit through the network. We build on top of the simulations

we presented in Chapter 2 and Chapter 3 and present simulation results for combi-

nation of the algorithms developed in the previous chapters. We demonstrate that

by taking advantage of the combination of the algorithms we are able to achieve the

desired average queuing delay requirements, maximum power available, and better

performance of the classification results at the decoder.

4.1 Combined Network Utility Maximization and

Quantization

Let us assume a network optimization convergence behavior similar to the conver-

gence behavior we observed in Figure 2.3 of Chapter 2. We repeat this figure here for

the ease of reading, see Figure 4.2. This figure shows the convergence of data rates of

4 sessions, marked 1 through 4, in the network shown in Figure 2.1 repeated here in

Figure 4.3. This pattern of change in the data rates of four sessions is converted into

bits/vector rates of Figure 4.4. The network algorithm enforces the sources to send

data with variable bits/vector depending on the data rate that was achieved from the
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solution of the network algorithm. The effect of delay requirements on the bits/vector

for two of the sessions (Sessions 1 and 4) is also shown with dashed lines in Figure

4.4. For the other two sessions, the effect of delay requirements on the bits/vector

rates is negligible.
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Figure 4.2: Convergence for the rates of 4 sessions. Solid curves are for the case of
no delay constraint and dashed curves are for the case with delay constraints.
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Figure 4.3: Network and flow topology I.

Let us assume that the data being sent is the four attributes of the iris plant pre-

sented in Section 3.6.3. In the aforementioned section we observed the classification

error and distortion results presented in Table 3.5 for three choices of bits/vector. We

expand this table to many more choices of bits/vector for the purpose of simulations

in this section. The results are presented in Table 4.1. We use these results in the

following simulations.
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Figure 4.4: Bit Rate Constraint based on Network Optimization Convergence (4
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4.1.1 Average Behavior Of Network Optimization Conver-

gence

The different values of bits/vector rate at each time interval of Figure 4.4 will

result in a different classification result and also different distortion of the signals

at each time interval until the algorithm converges. Once the algorithm converges

the results of classification and distortion will follow the corresponding results for

the specific bits/vector presented in Table 4.1. But before the convergence (time

0.6 × 104 in Figure 4.4), we would like to look at the average result of classification

and distortion measure. If we average the classification and distortion performance

and by taking the results from Table 4.1 into account, we can derive the results in
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Table 4.1: Iris Data Set (Four attributes): Classification Error(%) and Distortion(dB)
results for multiple choices of bits/vector.

λKL λKLDiag λMSE

Bits/vector % dB % dB % dB
4 23.8526 7.4631 23.8416 7.1900 36.1042 0.7404
5 14.4563 4.5628 15.3820 4.5431 22.8974 -2.0927
6 10.1825 2.3444 11.0941 2.3931 16.1980 -4.3232
7 8.1023 0.4721 8.1649 0.4968 12.7641 -6.3498
8 5.7673 -1.1981 5.9978 -1.0239 9.4306 -7.9476
9 5.000 -2.6135 4.9925 -2.6071 7.9290 -9.5392
10 4.0321 -4.0253 3.8744 -4.0123 6.6716 -10.4657
11 3.1715 -5.1890 3.1731 -5.1380 5.2822 -11.9055
12 2.8445 -5.9271 2.8656 -6.1425 4.5944 -12.7056
13 2.2905 -6.8768 2.3135 -6.8714 3.9699 -14.5315
14 1.9860 -7.7229 2.0376 -7.7784 3.3384 -15.6657
19 1.1599 -11.2211 1.1366 -11.2765 1.9091 -18.6926
21 0.9263 -12.9310 0.9037 -13.5464 1.4933 -20.6199
22 0.8746 -13.8142 0.8597 -13.8624 1.4840 -20.4051
23 0.8100 -14.4640 0.7756 -14.2114 1.2661 -21.4629
24 0.7339 -14.7171 0.6896 -14.3811 1.1771 -22.6660
26 0.6384 -15.0421 0.6277 -15.1192 1.0658 -23.1751
27 0.5642 -16.3304 0.5442 -16.3040 0.9621 -23.0438
28 0.5529 -15.9460 0.5169 -17.3628 0.9230 -23.4110
31 0.4645 -17.1634 0.4207 -17.2230 0.7329 -25.0613

Table 4.2 which shows the average distortion and classification error results (during

convergence of data rates) for the four sessions with different quantization schemes.

It is apparent from the results in Table 4.2 that both λKL and λKLDiag quantization

schemes perform better in the task of classification.
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Table 4.2: Average Classification Error(%) and Distortion(dB) results for transmit-

ting Four Attributes of the Iris Data Set through a network with data rate (bits/

convergence behaviour shown in Figure 4.4:

λKL λKLDiag λMSE

Session % dB % dB % dB

1 0.5526 -15.9774 0.5183 -17.1245 0.9183 -23.5524

1 (with delay constraint) 0.6406 -15.1384 0.6255 -15.1639 1.0666 -23.1110

2 10.6099 2.5663 11.5228 2.6081 16.868 -4.1001

3 6.0008 -1.0311 6.2145 -0.8718 9.7639 -7.7878

4 3.2420 -5.1162 3.2576 -5.0643 5.3924 -11.8956

4 (with delay constraint) 4.0318 -4.0265 3.9025 -4.0058 6.6745 -10.5431

4.1.2 Short-Term Behavior Of Network Optimization Con-

vergence

Now let us look at the short term effects of the convergence of the network algo-

rithm on the classification and distortion results. In order to observe this behavior

we choose a moving average filter of length 1500. These results are presented in Fig-

ure 4.5 for classification error and in Figure 4.6 for distortion. The pre-convergence

trend of classification error and distortion is what is expected based on the varia-

tions in the bits/vector rate, i.e., short-term upward spikes in the bits/vector will

result in better classification and distortion temporarily. The reverse argument also

holds, i.e., short-term dips of bits/vector adversely affects short-term classification

and distortion.
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Figure 4.5: Moving Average of Classification Error (4 sessions)

4.1.3 Changing the Delay Requirement

Let us now study the effect of imposing delay requirements on two of the sessions

in the previous example, specifically Sessions 1 and 4. Previously in Figure 4.4, we

saw the effect of the delay requirements on bits/vector rate of Sessions 1 and 4. Now

in the Figures 4.7-4.10 we see the effect of these bits/vector rates on the classification

and distortion measures. Imposing delay requirements will result in lower bits/vector

rates as can be seen in Figure 4.4. The lower bits/vector rate will result in lower

classification and distortion performance as is depicted in Figures 4.7-4.10.
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Figure 4.6: Moving Average of distortion (4 sessions)
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ments(Session 1)
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Figure 4.10: Moving Average of Distortion with and without delay requirements

(Session 4)

In the following we study some of the network topology, and parameter settings

that we studied in Section 2.4. As a reminder from Chapter 2, in the simulations, the

utility function for all sessions s is chosen as Us(xs) = αs log xs, which is an increasing,

strictly concave function of the session rate xs. It is also the utility function of TCP

Vegas. In congestion control with TCP Vegas, the utility function’s parameter αs

is typically set to the same constant for all sessions in order to achieve proportional

fairness of network rates. However, proportional fairness no longer remains true in

the NUM problem (2.13) formulation because of the inclusion of the sessions’ average

queueing delay as constraints. Therefore, in the simulations, we compare cases of all
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sessions possessing the same value of αs with cases in which some sessions change

their value of αs in order to reflect their preference for high data rate. In particular,

we examine cases of greedy sources desiring both high rate and low delay, sources

possessing a preference for low delay, and sources possessing a preference for high rate.

In these comparisons, we consider two different simple wireless network configurations

with 5 nodes and 4 sessions. See Figs. 4.11 and 4.12.

1

2
3

4

Figure 4.11: Network and flow topology I.

1
2

3
4

Figure 4.12: Network and flow topology II.

Specifically, in Set A of the simulations, we study the case of sessions with no

delay requirements and another case with different delay requirements. The results

are then compared and the impact of the delay requirements is studied. In Set B of

the simulations, we simulate how different αs values of different sessions affect the

rate-power allocation.

In Set C of the simulations, the relationship between the rate-power allocations

and flow topology is studied. In the captions of the tables, αs represents the vector

of αs pertaining to different sessions, i.e., αs = [α1, α2, α3, α4].

We present a description of simulations in different scenarios in Table 4.3 . We
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suggest that the reader refer to this table in order to follow the detailed description

of the scenarios in the following sections with ease.

Table 4.3: Summary of the simulation scenarios.

Set A Scenarios 1-4
Session 2 tightens its delay requirements
from 10 ms down to 2 ms while other sessions
maintain their delay requirements at 10 ms

Set B Scenarios 5-8

Session 2 tighten its delay requirements
just like Scenarios 1-4 but also requires
higher data rate by setting αs = 2
versus all other sessions having
αs = 1

Set A (to compare
with Scenario 9)

Scenario 5

All sessions have 10 ms delay requirements.
Session 2 requires higher data rate
by setting αs = 2 versus all
other sessions having αs = 1

Set B (to compare
with Scenario 5)

Scenario 9
Compared to Scenario 5, Sessions 3 and 4
require lower delay. Therefore, they set
their delay requirement at 5 ms.

Set B Scenario 10

Sessions 3 and 4 require heigher rate by
setting αs = 2. Session 2 requires lower
delay of 5 ms versus 10 ms for all
other sessions.

Set C Scenario 11-14
Similar to Scenarios 1-4 with a
different network topology.

4.1.4 Set A: Changing the Delay Requirement

We start by Scenarios 1-4, presented in Tables 4.4-4.5, where we study how dif-

ferent delay requirements affect the data rate and power settings of the sources and

links. We observe that as Session 2 tightens its delay requirements (10ms → 8ms →

5ms → 2ms) in Scenarios 1-4, the transmission power on link 2 increases. Further-

more the data rate and therefore bits/vector rate decreases for Session 2. A decrease

in bits/vector rate on Session 2 will result in lower classification accuracy regardless
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of the quantization method. However, the quantization methods developed in Chap-

ter 3 will fare better as far as classification results are concerned. Notably here, an

application that requires low delay usually can tolerate higher classification error, for

example a voice over IP application. On the other hand, all the other sessions were

forced to reduce their data rates and therefore bits/vector rates (in order to reduce

the average queuing delay, refer to Equation 2.5) which results in higher classification

errors.
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Table 4.4: Simulation results for network and flow topology I with αs = [1, 1, 1, 1]
Session #

1 2 3 4
Scenario 1
Delay Requirement (ms) 10.0 10.0 10.0 10.0
Delay Achieved (ms) 2.7 10.0 7.3 10.0
Data Rate (Kb/s) 946.5 200.4 254.3 369.2
bits/vector 26 6 7 10
λKL % 0.6384 10.1825 8.1023 4.0321
λKL dB -15.0421 2.3444 0.4721 -4.0253
λKLDiag % 0.6277 11.0941 8.1649 3.8744
λKLDiag dB -15.1192 2.3931 0.4968 -4.0123
λMSE % 1.0658 16.1980 12.7641 6.6716
λMSE dB -23.1751 -4.3232 -6.3498 -10.4657

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.111 0.120 0.060

Scenario 2
Delay Requirement (ms) 10.0 8.0 10.0 10.0
Delay Achieved (ms) 2.1 8.0 5.9 10.0
Data Rate (Kb/s) 921.9 195.7 248.4 362.5
bits/vector 26 5 7 10
λKL % 0.6384 14.4563 8.1023 4.0321
λKL dB -15.0421 4.5628 0.4721 -4.0253
λKLDiag % 0.6277 15.3820 8.1649 3.8744
λKLDiag dB -15.1192 4.5431 0.4968 -4.0123
λMSE % 1.0658 22.8974 12.7641 6.6716
λMSE dB -23.1751 -2.0927 -6.3498 -10.4657

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.112 0.120 0.059



www.manaraa.com

89

Table 4.5: Simulation results for network and flow topology I with αs = [1, 1, 1, 1]
Session #

1 2 3 4
Scenario 3
Delay Requirement (ms) 10.0 5.0 10.0 10.0
Delay Achieved (ms) 1.3 5.0 3.7 10.0
Data Rate (Kb/s) 843.5 179.9 228.7 338.8
bits/vector 23 5 6 9
λKL % 0.8100 14.4563 10.1825 5.0000
λKL dB -14.4640 4.5628 2.3444 -2.6135
λKLDiag % 0.7756 15.3820 11.0941 4.9925
λKLDiag dB -14.2114 4.5431 2.3931 -2.6071
λMSE % 1.2661 22.8974 16.1980 7.9290
λMSE dB -21.4629 -2.0927 -4.3232 -9.5392

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.115 0.120 0.058

Scenario 4
Delay Requirement (ms) 10.0 2.0 10.0 10.0
Delay Achieved (ms) 0.5 2.0 1.5 10.0
Data Rate (Kb/s) 413.4 83.9 105.3 199.5
bits/vector 11 2 3 6
λKL % 3.1715 . . 10.1825
λKL dB -5.1890 . . 2.3444
λKLDiag % 3.1731 . . 11.0941
λKLDiag dB -5.1380 . . 2.3931
λMSE % 5.2822 . . 16.1980
λMSE dB -11.9055 . . -4.3232

Link 1 Link 2 Link 3 Link 4
Power (W) 0.116 0.120 0.120 0.051
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4.1.5 Set B: Changing αs Together with the Delay Require-

ment

Furthermore, we consider a situation in which Session 2 emphasizes a preference for

higher rate than the rest of the sessions. This preference is expressed by choosing αs

higher than other sessions. As Session 2 tightens its delay requirement in the Scenarios

5-8 depicted in Tables 4.6-4.7, it turns itself into a greedy source which requires both

high rate and low delay. Comparing the bits/vector rate and classification results

of Scenarios 5-8 with the bits/vector rate and classification results from Scenarios

1-4, we see that Session 2 achieves a higher bits/vector rate at the expense of lower

bits/vector rates for other sessions. This in turn will result in better classification

results for Session 2 and worse classification results for all other sessions. Note that

in congestion control with TCP Vegas, the utility functions parameter αs is typically

set to the same constant for all sessions in order to achieve proportional fairness of

network rates. However, proportional fairness no longer remains true in the NUM

problem 2.13 formulation because of the inclusion of the sessions average queueing

delay as constraints.

In Scenario 9, we consider a case of two sessions Sessions 3-4 requiring lower delay

than they require in Scenario 5. But since they set their αs values to 1, they are not

greedy as far as expecting high rate as well. Comparing the results in Scenario 9 with

those in Scenario 5, we see that Sessions 3-4, that require lower delay, achieve it at the

expense of a lower bits/vector rate, and therefore an increase in their classification

error rate. In Scenario 10 in Table 4.8, we consider the case where two sessions

Sessions 3-4 require a higher rate but not very low delay and another session Session

2 requires lower delay but not a higher rate. Therefore Sessions 3-4 set their αs
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value at 2 while the rest of the sessions keep it at 1. Comparing the results of

Scenario 10 with those of Scenario 3, we infer that the higher rate requirements of

Sessions 3-4 are achieved at the expense of lower bits/vector rate rates for other

sessions. Therefore, the lower classification performance for other sessions and better

classification performance for Sessions 3-4 are achieved.

For some low data rates, the achieved bits/vector rate presents a very high quan-

tization distortion and non-acceptable classification results which were not presented

in the tables.
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Table 4.6: Simulation results for network and flow topology I with αs = [1, 2, 1, 1]
Session #

1 2 3 4
Scenario 5
Delay Requirement (ms) 10.0 10.0 10.0 10.0
Delay Achieved (ms) 2.6 10.0 7.4 10.0
Data Rate (Kb/s) 786.0 317.6 199.0 295.1
bits/vector 22 9 6 8
λKL % 0.8746 5.000 10.1825 5.7673
λKL dB -13.8142 -2.6135 2.3444 -1.1981
λKLDiag % 0.8597 4.9925 11.0941 5.9978
λKLDiag dB -13.8624 -2.6071 2.3931 -1.0239
λMSE % 1.4840 7.9290 16.1980 9.4306
λMSE dB -20.4051 -9.5392 -4.3232 -7.9476

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.118 0.120 0.056

Scenario 6
Delay Requirement (ms) 10.0 8.0 10.0 10.0
Delay Achieved (ms) 2.1 8.0 5.9 10.0
Data Rate (Kb/s) 764.7 310.2 194.6 289.9
bits/vector 21 9 5 8
λKL % 0.9263 5.000 14.4563 5.7673
λKL dB -12.9310 -2.6135 4.5628 -1.1981
λKLDiag % 0.9037 4.9925 15.3820 5.9978
λKLDiag dB -13.5464 -2.6071 4.5431 -1.0239
λMSE % 1.4933 7.9290 22.8974 9.4306
λMSE dB -20.6199 -9.5392 -2.0927 -7.9476

Link 1 Link 2 Link 3 Link 4
Power 0.120 0.118 0.120 0.056

Scenario 7
Delay Requirement (ms) 10.0 5.0 10.0 10.0
Delay Achieved (ms) 1.3 5.0 3.7 10.0
Data Rate (Kb/s) 700.0 285.1 179.0 272.6
bits/vector 19 8 5 8
λKL % 1.1599 5.7673 14.4563 5.7673
λKL dB -11.2211 -1.1981 4.5628 -1.1981
λKLDiag % 1.1366 5.9978 15.3820 5.9978
λKLDiag dB -11.5464 -1.0239 4.5431 -1.0239
λMSE % 1.9091 9.4306 22.8974 9.4306
λMSE dB -18.6926 -7.9476 -2.0927 -7.9476

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.120 0.120 0.055
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Table 4.7: Simulation results for network and flow topology I with αs = [1, 2, 1, 1]
Session #

1 2 3 4
Scenario 8
Delay Requirement (ms) 10.0 2.0 10.0 10.0
Delay Achieved (ms) 0.5 2.0 1.5 10.0
Data Rate (Kb/s) 326.1 133.4 83.9 168.3
bits/vector 9 4 2 5
λKL % 5.000 23.8526 . 14.4563
λKL dB -2.6135 7.4631 . 4.5628
λKLDiag % 4.9925 23.8416 . 15.3820
λKLDiag dB -2.6071 7.1900 . 4.5431
λMSE % 7.9290 36.1042 . 22.8974
λMSE dB -9.5392 0.7404 . -2.0927

Link 1 Link 2 Link 3 Link 4
Power 0.112 0.120 0.120 0.050

Scenario 9
Delay Requirement (ms) 10.0 10.0 5.0 5.0
Delay Achieved (ms) 5.0 10.0 5.0 5.0
Data Rate (Kb/s) 835.4 305.6 187.0 268.8
bits/vector 23 8 5 7
λKL % 0.8100 5.7673 14.4563 8.1023
λKL dB -14.4640 -1.1981 4.5628 0.4721
λKLDiag % 0.7756 5.9978 15.3820 8.1649
λKLDiag dB -14.2114 -1.0239 4.5431 0.4968
λMSE % 1.2661 9.4306 22.8974 12.7641
λMSE dB -21.6926 -7.9476 -2.0927 -6.3498

Link 1 Link 2 Link 3 Link 4
Power (W) 0.120 0.118 0.120 0.058
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Table 4.8: Simulation results for network and flow topology I with αs = [1, 1, 2, 2]
Session #

1 2 3 4

Scenario 10
Delay Requirement (ms) 10.0 5.0 10.0 10.0
Delay Achieved (ms) 1.2 5.0 3.8 10.0
Data Rate (Kb/s) 773.1 119.9 283.8 381.2
bits/vector 21 3 8 11
λKL % 0.9263 . 5.7673 3.1715
λKL dB -12.9310 . -1.1981 -5.1890
λKLDiag % 0.9037 . 5.9978 3.1731
λKLDiag dB -13.5464 . -1.0239 -5.1380
λMSE % 1.4933 . 9.4306 5.2822
λMSE dB -20.6199 . -7.9476 -11.9055

Link 1 Link 2 Link 3 Link 4
Power (W) 0.105 0.108 0.120 0.060
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4.1.6 Set C: A Different Flow Topology

Simulations similar to Tables 4.4-4.5 are generated for the network and flow topol-

ogy II in Fig. 4.12. The corresponding results are shown in Tables 4.9-4.10. The

Table 4.9: Simulation results for network and flow topology II with αs = [1, 1, 1, 1]
Session #

1 2 3 4
Scenario 11
Delay Requirement (ms) 10.0 10.0 10.0 10.0
Delay Achieved (ms) 6.5 10.0 10.0 3.5
Data Rate (Kb/s) 347.3 192.9 197.3 433.9
bits/vector 10 5 5 12
λKL % 4.0321 14.4563 14.4563 2.8445
λKL dB -4.0253 4.5628 4.5628 -5.9271
λKLDiag % 3.8744 15.3820 15.3820 2.8656
λKLDiag dB -4.0123 4.5431 4.5431 -6.1425
λMSE % 6.6716 22.8974 22.8974 4.5944
λMSE dB -10.4657 -2.0927 -2.0927 -12.7056

Link 1 Link 2 Link 3 Link 4
Power (W) 0.054 0.120 0.120 0.073

Scenario 12
Delay Requirement (ms) 10.0 8.0 10.0 10.0
Delay Achieved (ms) 5.0 8.0 10.0 3.0
Data Rate (Kb/s) 334.2 188.8 194.8 434.1
bits/vector 9 5 5 12
λKL % 5.000 14.4563 14.4563 2.8445
λKL dB -2.6135 4.5628 4.5628 -5.9271
λKLDiag % 4.9925 15.3820 15.3820 2.8656
λKLDiag dB -2.6071 4.5431 4.5431 -6.1425
λMSE % 7.9290 22.8974 22.8974 4.5944
λMSE dB -9.5392 -2.0927 -2.0927 -12.7056

Link 1 Link 2 Link 3 Link 4
Power (W) 0.052 0.120 0.120 0.074

same observations that were made in the previous scenarios can also be made here.

We emphasize another point by the network and flow topology II: the result of rate-

power allocation for any particular session is highly interdependent with the topology
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of the other flows. For instance, Session 1 in flow topology II resembles Session 4 in

flow topology I. But the results of the power, bits/vector rate allocations for Session

4 in the flow topology I (see Tables 4.4-4.5) is different from the results for Session 1

in the flow topology II when comparing the achieved delay (see Tables 4.9-4.10).
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Table 4.10: Simulation results for network and flow topology II with αs = [1, 1, 1, 1]
Session #

1 2 3 4
Scenario 13
Delay Requirement (ms) 10.0 5.0 10.0 10.0
Delay Achieved (ms) 3.2 5.0 10.0 1.8
Data Rate (Kb/s) 297.9 173.5 181.7 415.7
bits/vector 8 5 5 12
λKL % 5.7673 14.4563 14.4563 2.8445
λKL dB -1.1981 4.5628 4.5628 -5.9271
λKLDiag % 5.9978 15.3820 15.3820 2.8656
λKLDiag dB -1.0239 4.5431 4.5431 -6.1425
λMSE % 9.4306 22.8974 22.8974 4.5944
λMSE dB -7.9476 -2.0927 -2.0927 -12.7056

Link 1 Link 2 Link 3 Link 4
Power (W) 0.051 0.120 0.120 0.077

Scenario 14
Delay Requirement (ms) 10.0 2.0 10.0 10.0
Delay Achieved (ms) 1.3 2.0 10.0 0.7
Data Rate (Kb/s) 125.7 83.3 92.9 247.1
bits/vector 3 2 3 7
λKL % . . . 8.1023
λKL dB . . . 0.4721
λKLDiag % . . . 8.1649
λKLDiag dB . . . 0.4968
λMSE % . . . 12.7641
λMSE dB . . . -6.3498

Link 1 Link 2 Link 3 Link 4
Power (W) 0.046 0.120 0.120 0.092
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4.2 Remarks

In summary, the results in these simulations demonstrated that by combining

the network utility maximization problem developed in Chapter 2 and quantization

method developed in Chapter 3, we can satisfy the minimum rate requirements of the

data transfer, limits on power of transmitters, and delay requirements of sources. We

furthermore were able to perform better in the classification of signals at the decoder

by using the quantization schemes developed in Chapter 4.
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we studied two important problems that occur in quantiza-

tion and transmission over multi-hop wireless networks. The first problem addresses

resource allocation in a resource-limited network. We presented the problem of allo-

cating resources of bandwidth and power in a multi-hop wireless network in a Network

Utility Maximization (NUM) framework, specifically incorporating an average queu-

ing delay requirement of the sessions into the NUM problem. We transformed the

non-convex problem to a convex problem by a change of variable and assuming a

high SIR scenario. We presented a distributed iterative algorithm solving the NUM

problem. In particular, in our solution algorithm, both sources and links exchange

information allowing for the NUM problem to solve for the session rate, power of

transmitters, and delay share of each link in an iterative distributed manner. The

simulations showed the performance of the solution and comparisons with the previ-

ously developed algorithms and demonstrated that average queuing delay requirement

of the sessions were achieved.

The second problem we studied arises in scenarios where vector signals are quan-
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tized and transferred to a receiver (decoder) over a communication network. At the

receiver, not only the reconstruction of the signals is intended but also classifications

of signals may be desirable. In the second part of this dissertation we presented

a solution for quantization of signals for the purpose of obtaining a more accurate

classification at the decoder. We employed high-rate theory for quantizer design.

Therefore an optimal point density function that determines where the codepoints

should lie in the space was derived. We chose the symmetric KL divergence between

the conditional probabilities of classes given data before and after quantization as our

distortion measure. The performance of this method on synthetically generated data

was examined and observed to be superior in the task of classification of signals at

the decoder. The tradeoff between the reproduction fidelity and classification accu-

racy was studied as well. Furthermore, we examined the effectiveness of our proposed

method on real data sets with low dimensions. It was verified by the simulation re-

sults that the proposed method shows improvement in the classification results of real

data sets as well.

We combined the two algorithms developed in this dissertation. We used the

examples from the simulation results of each algorithm and built on top of them

to present simulation results for combination of the algorithms developed in previous

chapters. We demonstrated that taking advantage of the combination of the algorithm

we were able to achieve the desired average queuing delay requirements, maximum

power available, and better performance of the classification results at the decoder.
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5.2 Proposed Future Research Directions

We believe that there is a lot of potential in the development of the second part

of this research work beyond this dissertation. The emergence of many recent classi-

fication algorithms and the proof of their effectiveness and superiority can lead one

to make an effort to design quantizers that jointly perform well when paired with the

classifiers. One possible choice could be a joint Support Vector Machine Classifier

Vector Quantizer. Furthermore, the developments in the area of dimensionality re-

duction and finding patterns in high-dimensional signals by finding a lower dimension

manifold, can also be combined with vector quantization.

Furthermore, the combination of the algorithms developed in Chapter 2 and 3

can be devised through a joint cross-layer NUM and quantization method. This can

be performed through an even larger augmentation of the basic NUM problem, an

augmentation beyond what was presented in the Chapter 2 of this dissertation. This

new larger augmentation should include the distortion measure of the quantizer in

order to jointly solve the NUM-Quantization problem. It is expected that this opti-

mization problem will be highly non-convex and would require a change of variables

and other methods beyond what we presented in Chapter 2 to convert the problem

into a convex optimization problem.

Practical implementation concerns of a quantizer is one important research ex-

tension to this dissertation. For high bit rates a full search quantizer is impractical,

in terms of training, complexity and storage. Exploring different methods for simpli-

fying higher rate quantizers and therefore avoiding a full search method would be a

matter of further research. One of the methods that has shown superiority in this
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regard is the implementation of the transform coder in [DR07].

In the following, we present another possible way to think of a combination of the

algorithms developed in Chapter 2 and 3 of this dissertation that some readers may

be interested to explore more.

5.2.1 NUM framework with Quantized messages

Consider the problem we studied in Chapter 2 of this dissertation, i.e., incorpo-

rating delay requirements of the sources into the congestion control algorithm. But

let us assume that because of further network resource limitations we would like to

avoid unnecessary overhead in the network resource usage. This overhead is intro-

duced by message passing that was required for our iterative algorithm to achieve

optimal resource allocation. Let us look at the following section of Algorithm I we

developed in Chapter 2.

(2) Each transmitter calculates a message

mj(t) based on values that can be determined at each node and passes it

to all other

transmitters by a flooding protocol:

mj(t) =
λj(t)SIRj(t)

Pj(t)Gjj

. (5.1)

(3) Each transmitter updates its power based on

P�(t+ 1) = P�(t) + κp

(
λ�(t)

P�(t)
−

∑
j �=�

Gj�mj(t)

)
. (5.2)
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Realistically, because of network limitations the messages, mj(t), are not transmitted

unquantized. Coarse quantization of the messages, mj(t), will affect the convergence

of the sub-gradient method. The effect of quantization of messages in various network

settings has been studied in a number of research works. The authors in [NOOT08]

provided bounds on the convergence rate of the subgradient method under a quantized

messages constraint. Furthermore, they showed that for their developed algorithm

sources were able to achieve the optimal objective value of their utility within a cer-

tain error. In another research paper, the authors in [RN05] studied the effect of

quantization of optimization variables in a wireless sensor network among other con-

tributions. First they examined the convergence of their algorithm under constant

step size for subgradient methods. They claimed that in many wireless sensor appli-

cations achieving a coarse estimate of the parameters may be an acceptable tradeoff

if the amount of energy and bandwidth used by network is less than what is required

to achieve a more accurate estimate. Furthermore, they showed that there will be

some error introduced in the achieved optimal values if quantization is introduced.

If the quantization is precise the amount of this error is very minimal. But for a

coarser quantization, which is required for a resource constrained network, the rate

of convergence is not affected considerably.

Quantizing the messages that are required for the iterative algorithms to con-

verge to an optimal solution brings up the interesting problem of how to quantize

the messages to assure the convergence and speed of convergence of the iterative

algorithms. Design of a quantizer that minimizes the effect of quantization error
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on the convergence performance of a specific iterative algorithm can be a matter of

research interest. The authors in [CL10, DG13] studied the convergence behavior

of distributed iterative algorithms and multi-agent systems with quantized message

passing. They proposed two time-invariant quantization methods to minimize the

effect of quantization error on the convergence. They also studied the effect of the

design of quantizer on the convergence performance.

In another paper, [NB10], authors studied the effect of deterministic noise in sub-

gradient methods. They discussed the convergence properties using different stepsize

rules and they proved convergence to the optimal value within some tolerance.

All of these different scenarios suggest that there have been some good studies

considering the effect of noise or quantization on the convergence properties of decen-

tralized sub-gradient algorithms which was the heart of Chapter 2 of this dissertation.

Furthermore, the idea of quantizing for a different purpose other than only reproduc-

tion fidelity, which was the core of Chapter 3 of this dissertation, has good merit

in the study of how to quantize messages to achieve better convergence properties.

We believe pursuing some of these suggested scenarios is a matter of further research

and expansion to this dissertation. These expansions can be thought of as either the

combination of the individual contribution of each part of this dissertation, as we

mentioned in the first scenario we described above. Or they can be a more complex

matter of studying the effect of different quantization methods on the convergence

properties of the sub-gradient algorithm. Or even a whole new interesting topic of de-

signing a quantizer that jointly optimizes reproduction fidelity, classification accuracy

at the decoder and speed of convergence of the subgradient method.
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APPENDIX A

Derivation of vector d(x̂)

Vector d(x̂) is an n-element row vector whose elements are defined by

di(x̂) =
∂d(x, x̂)

∂xi

∣∣∣∣∣
x=x̂

. (A.1)

If d(x, x̂) is defined as in (3.2) which is repeated here for ease of reading

d(x, x̂) = D

(
P (C|x)||P (C|x̂)

)
+D

(
P (C|x̂)||P (C|x)

)
=

C∑
j=1

[
P (Cj|x) log P (Cj|x)

P (Cj|x̂) + P (Cj|x̂) log P (Cj|x̂)
P (Cj|x)

]
, (A.2)

then

di(x̂) =
∂d(x, x̂)

∂xi

∣∣∣∣∣
x=x̂

=
∂

∂xi

C∑
j=1

[
P (Cj|x) log P (Cj|x)

P (Cj|x̂) + P (Cj|x̂) log P (Cj|x̂)
P (Cj|x)

] ∣∣∣∣∣
x=x̂

=
C∑

j=1

[
∂

∂xi

(
P (Cj|x) log P (Cj|x)

P (Cj|x̂)
)
+

∂

∂xi

(
P (Cj|x̂) log P (Cj|x̂)

P (Cj|x)
)] ∣∣∣∣∣

x=x̂

=
C∑

j=1[
log

P (Cj|x)
P (Cj|x̂)

∂

∂xi

P (Cj|x) + P (Cj|x) ∂

∂xi

log
P (Cj|x)
P (Cj|x̂) + P (Cj|x̂) ∂

∂xi

log
P (Cj|x̂)
P (Cj|x)

] ∣∣∣∣∣
x=x̂

=
C∑

j=1

[
log

P (Cj|x)
P (Cj|x̂)

∂

∂xi

P (Cj|x) + ∂

∂xi

P (Cj|x)− P (Cj|x̂)
P (Cj|x)

∂

∂xi

P (Cj|x)
] ∣∣∣∣∣

x=x̂

= 0.

(A.3)
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APPENDIX B

|D| for 2-D-2-Class Scenarios

Let us assume that the distortion measure is defined as the following

d(x, x̂) =
C∑

j=1

f(P (Cj|x), P (Cj|x̂)), (B.1)

where f is any function of its arguments. Here, we will show that the determinant

of the sensitivity matrix associated with d(x, x̂) is zero if all the following conditions

are satisfied

1. ∂f(x,y)
∂x

|x=y = 0.

2. Signals are two dimensional.

3. Number of classes is two, i.e., C = 2.
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It is notable that the first condition holds for most distortion measures of choice.

Di,k(x̂) =
∂

∂xi

∂

∂xk

d(x, x̂) =
∂

∂xi

∂

∂xk

C∑
j=1

f(P (Cj|x), P (Cj|x̂))
∣∣∣∣
x=x̂

=

∂

∂xi

C∑
j=1

∂

∂P (Cj|x)f(P (Cj|x), P (Cj|x̂)).∂P (Cj|x)
∂xk

∣∣∣∣
x=x̂

=

C∑
j=1

∂

∂P (Cj|x)
∂

∂P (Cj|x)f(P (Cj|x), P (Cj|x̂)).∂P (Cj|x)
∂xi

.
∂P (Cj|x)

∂xk

+

∂

∂P (Cj|x)f(P (Cj|x), P (Cj|x̂)). ∂

∂xi

∂P (Cj|x)
∂xk

∣∣∣∣
x=x̂

=

C∑
j=1

∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂)).∂P (Cj|x)
∂xi

.
∂P (Cj|x)

∂xk

+

∂

∂P (Cj|x)f(P (Cj|x), P (Cj|x̂)). ∂2

∂xi∂xk

P (Cj|x)
∣∣∣∣
x=x̂

. (B.2)

For a two-dimensional signal D is a 2× 2 matrix whose elements can be represented

as

D1,1(x̂) =
C∑

j=1

∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂)).[∂P (Cj|x)
∂x1

]2+

∂

∂P (Cj|x)f(P (Cj|x), P (Cj|x̂)). ∂
2

∂x2
1

P (Cj|x)
∣∣∣∣
x=x̂

, (B.3)

D1,2(x̂) =
C∑

j=1

∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂)).∂P (Cj|x)
∂x1

.
∂P (Cj|x)

∂x2

+

∂

∂P (Cj|x)f(P (Cj|x), P (Cj|x̂)). ∂2

∂x1∂x2

P (Cj|x)
∣∣∣∣
x=x̂

= D2,1(x̂), (B.4)

and

D2,2(x̂) =
C∑

j=1

∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂)).[∂P (Cj|x)
∂x2

]2+

∂

∂P (Cj|x)f(P (Cj|x), P (Cj|x̂)). ∂
2

∂x2
2

P (Cj|x)
∣∣∣∣
x=x̂

. (B.5)
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Under the condition that ∂f(x,y)
∂x

|x=y = 0, the aforementioned elements of matrix D

reduce to the following

D1,1(x̂) =
C∑

j=1

∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂)).[∂P (Cj|x)
∂x1

]2
∣∣∣∣
x=x̂

, (B.6)

D1,2(x̂) =
C∑

j=1

∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂)).∂P (Cj|x)
∂x1

.
∂P (Cj|x)

∂x2

∣∣∣∣
x=x̂

= D2,1(x̂),

(B.7)

and

D2,2(x̂) =
C∑

j=1

∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂)).[∂P (Cj|x)
∂x2

]2
∣∣∣∣
x=x̂

. (B.8)

And therefore

|D| = D1,1(x̂)D2,2(x̂)−D1,2(x̂)D2,1(x̂) =

���������������������������������
C∑

j=1

[
∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂))
]2 [

∂P (Cj|x)
∂x1

∂P (Cj|x)
∂x2

]2
+

C∑
j,�=1,j �=�

∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂)).[∂P (Cj|x)
∂x1

]2

∂2

∂P 2(C�|x)f(P (C�|x), P (C�|x̂)).[∂P (C�|x)
∂x2

]2−

���������������������������������
C∑

j=1

[
∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂))
]2 [

∂P (Cj|x)
∂x1

∂P (Cj|x)
∂x2

]2
−

C∑
j,�=1,j �=�

∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂)).∂P (Cj|x)
∂x1

.
∂P (Cj|x)

∂x2

.

∂2

∂P 2(C�|x)f(P (C�|x), P (C�|x̂)).∂P (C�|x)
∂x1

.
∂P (C�|x)

∂x2

. (B.9)
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Furthermore |D| simplifies to

|D| =
C∑

j,�=1,j �=�

∂2

∂P 2(Cj|x)f(P (Cj|x), P (Cj|x̂)). ∂2

∂P 2(C�|x)f(P (C�|x), P (C�|x̂))
[[

∂P (Cj|x)
∂x1

∂P (C�|x)
∂x2

]2
− ∂P (Cj|x)

∂x1

.
∂P (Cj|x)

∂x2

∂P (C�|x)
∂x1

.
∂P (C�|x)

∂x2

] ∣∣∣∣∣
x=x̂

. (B.10)

Applying the last of the conditions stated at the beginning of this appendix, i.e.,

C = 2, we conclude that

|D| = ∂2

∂P 2(C1|x)f(P (C1|x), P (C1|x̂)). ∂2

∂P 2(C2|x)f(P (C2|x), P (C2|x̂))[ [
∂P (C1|x)

∂x1

∂P (C2|x)
∂x2

]2
+

[
∂P (C2|x)

∂x1

∂P (C1|x)
∂x2

]2
−

2
∂P (C1|x)

∂x1

.
∂P (C1|x)

∂x2

∂P (C2|x)
∂x1

.
∂P (C2|x)

∂x2

]∣∣∣∣∣
x=x̂

=

∂2

∂P 2(C1|x)f(P (C1|x), P (C1|x̂)). ∂2

∂P 2(C2|x)f(P (C2|x), P (C2|x̂))
[
∂P (C1|x)

∂x1

∂P (C2|x)
∂x2

− ∂P (C2|x)
∂x1

∂P (C1|x)
∂x2

]2 ∣∣∣∣∣
x=x̂

(B.11)

As the last step we will show that the last square bracket term is zero if C = 2 and

therefore that will prove that |D| = 0 under the aforementioned conditions. When

we only have two classes, the following holds

P (C1|x) + P (C2|x) = 1, (B.12)

and therefore

P (C2|x) = 1− P (C1|x). (B.13)

Replacing this in the last bracket term in (B.11) yields
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∂P (C1|x)
∂x1

∂P (C2|x)
∂x2

− ∂P (C2|x)
∂x1

∂P (C1|x)
∂x2

=

∂P (C1|x)
∂x1

∂[1− P (C1|x)]
∂x2

− ∂[1− P (C1|x)]
∂x1

∂P (C1|x)
∂x2

=

− ∂P (C1|x)
∂x1

∂P (C1|x)
∂x2

+
∂P (C1|x)

∂x1

∂P (C1|x)
∂x2

= 0. (B.14)
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